The feeding biology of Enchytraeus crypticus and other enchytraeids is poorly understood as is their effect on nematophagous fungi. Because enchytraeids had been associated with nematophagous fungi in the field and had suppressed these fungi in soil microcosms, we tested the hypothesis that exclusion of enchytraeids, largely E. crypticus, would improve establishment of certain nematophagous fungi in field plots. The fungi, Hirsutella rhossiliensis and Monacrosporium gephyropagum, are being studied as potential control agents of plant-parasitic nematodes and were formulated as hyphae in alginate pellets. The pellets were mixed into soil without enchytraeids and placed in cages (PVC pipe, 80 cm volume) with fine (20 μm) or coarse (480 μm) mesh; cages were buried 15 cm deep in field plots and then recovered after 6-52 days. When fine mesh was used, enchytraeids were excluded and the fungi increased to large numbers. When coarse mesh was used, enchytraeid numbers in cages increased rapidly and the fungi did poorly. Although mesh also affected other potential fungivores, including collembolans and large dorylaimid nematodes, we suspect that enchytraeids were more important because large numbers were consistently found in cages with coarse mesh soon after the cages were placed in soil. Organisms smaller than enchytraeids (bacteria, fungi, and protozoa) also appeared to be important because the fungi did better in heat-treated soil than in non-heat-treated soil, regardless of mesh size. The rapid increase in enchytraeid numbers in cages with hyphal pellets and coarse mesh was probably caused by movement of enchytraeids toward the pellets with hyphae: increase in enchytraeid numbers was minimal when movement into cages was blocked (or when cages contained pellets without hyphae). Overall, the data were consistent with the hypothesis that enchytraeids, or other meso- or macrofauna, contributed to suppression of nematophagous fungi in our field plots.