This study reveals insights into the transurethanization reactions leading to the aliphatic–aromatic non-isocyanate poly(carbonate-urethane)s (NIPCUs) and their structure–property relationships. The crucial impact of the alkyl chain length in 4,4′‑diphenylmethylene bis(hydroxyalkyl carbamate) (BHAC) on the process of transurethanization reactions was proved. The strong susceptibility of hydroxyethyl‑ and hydroxybutyl carbamate moieties to the back-biting side reactions was observed due to the formation of thermodynamically stable cyclic products and urea bonds in the BHACs and NIPCUs. When longer alkyl chains (hydroxypentyl-, hydroxyhexyl-, or hydroxydecyl carbamate) were introduced into the BHAC structure, it was not prone to the back‑biting side reaction. Both 1H and 13C NMR, as well as FT-IR spectroscopies, confirmed the presence of carbonate and urethane (and urea for some of the samples) bonds in the NIPCUs, as well as proved the lack of allophanate and ether groups. The increase in the alkyl chain length (from 5 to 10 carbon atoms) between urethane groups in the NIPCU hard segments resulted in the increase in the elongation at break and crystalline phase content, as well as the decrease in the Tg, tensile strength, and hardness. Moreover, the obtained NIPCUs exhibited exceptional mechanical properties (e.g., tensile strength of 40 MPa and elongation at break of 130%).