1928
DOI: 10.1007/bf01448839
|View full text |Cite
|
Sign up to set email alerts
|

�ber die partiellen Differenzengleichungen der mathematischen Physik

Abstract: Ersetzt man bei den klassischen linearen Differentialgleichungsproblemen der mathematischen Physik die Differentialquotienten dutch Dif[erenzenquotienten in einem --etwa reehtwinklig angenommenen --Gitter, so gelangt man zu algebraischen Problemen yon sehr durehsichtiger Struktur. Die vorliegende Arbeit untersueht nach emer elementaren Diskussion dieser algebraischen Probleme vor allem die Frage, wie sieh die LSsungen verhalten, wenn man die Maschen des Gitters gegen Null streben l~l~t. Dabei beschr~tnken wit … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
706
0
5

Year Published

1997
1997
2017
2017

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 3,295 publications
(774 citation statements)
references
References 3 publications
1
706
0
5
Order By: Relevance
“…This is expected based on the Courant-FriedrichsLewy condition [26,50], which gives a maximum time step of 0.046 ms with Dx = 0.1 mm or a minimum spatial resolution of 0.104 mm with Dt = 0.05 ms, with the benchmark model parameters. Further analysis by finite difference codes D, G and K are consistent with this analysis, with the model solving for Dt = 0.04 ms but not 0.05 ms in all three codes.…”
Section: (B) Failed Simulationsmentioning
confidence: 95%
“…This is expected based on the Courant-FriedrichsLewy condition [26,50], which gives a maximum time step of 0.046 ms with Dx = 0.1 mm or a minimum spatial resolution of 0.104 mm with Dt = 0.05 ms, with the benchmark model parameters. Further analysis by finite difference codes D, G and K are consistent with this analysis, with the model solving for Dt = 0.04 ms but not 0.05 ms in all three codes.…”
Section: (B) Failed Simulationsmentioning
confidence: 95%
“…The Courant-Friedrichs-Lewy (CFL) condition (Courant et al, 1928) limits the numerical time step Δt. Zhebel et al (2014), e.g., provide expressions for arbitrary spatial orders with secondorder time stepping.…”
Section: Subsamplingmentioning
confidence: 99%
“…is the interface point (between cell i − 1 and i, for x i+ 1 2 = x i+1− 1 2 analog) and time step ∆t = t m+1 − t m , chosen so that the CFL condition [19] λ max ∆t ≤ ∆x, where λ max is the largest wave speed, is satisfied. We assume the grid points are labeled by i ∈ N 0 and the time steps by m ∈ N 0 such that x 0 = ∆x 2 and t 0 = 0.…”
Section: Motivation and Numerical Schemementioning
confidence: 99%
“…This enables us to determine v j (t m ) according to (16). In order to obtain ∂ t v j (t m ), we solve equation (19) with R j = (r 1 (v j (t m )), r 2 (v j (t m ))) . For the second component we note that…”
Section: Application To Gas Dynamicsmentioning
confidence: 99%