Perovskite solar cells (PSCs) are usually fabricated by using the spin coating method. During the fabrication process, the surface status is very important for energy conversion between layers coated in the substrate. PSCs have multilayer-stacked structures, such as the transparent electrode layer, the perovskite layer, and a metal electrode. The efficiency and uniformity of all layers depend on the surface status of the transparent electrode coated on the glass substrate. Until now, etching methods by chemical processes have been introduced to make the substrate surface smooth and uniform by decreasing surface roughness. However, highly reactive chemical treatments can be harmful to the environment. In this study, we employed an eco-friendly chemical-mechanical polishing (CMP) process to ensure the fluorine-doped tin oxide (FTO) substrate is treated with a smooth surface. Before the perovskite layer and electron transport layer (ETL) are applied, the TiO2 layer is coated with the FTO substrate, and the surface of the FTO substrate is polished using CMP. As a result, the CMP-treated surface of the FTO substrate showed a smooth surface, and the PSCs with CMP treatment did not require conventional TiCl4 treatment.