Bağımlı değişkenin sayıma dayalı veri olması durumunda güvenilir tahminler yapabilmek için Sayma Verisi Regresyon Modellerinin kullanılması daha uygundur. Sayıma dayalı veriler kesikli bir yapıda olduğundan bu regresyon modelleri kesikli dağılımlardan yararlanılarak geliştirilmiştir. Bu çalışmada, Türkiye İstatistik Kurumu (TÜİK) 2019 yılı Gelir ve Yaşam Koşulları Araştırması (GKYA) verilerinden yararlanarak bir sayma verisi olan bireylerin işsiz kaldığı sürenin (ay cinsinden) modellenmesi amaçlanmıştır. Analizde kullanılacak bağımsız değişkenler, tüm olası alt küme yöntemi ile medeni durum, eğitim durumu, genel sağlık ve kronik hastalık olarak belirlenmiştir. Sayma veri regresyon modellerinden Poisson Regresyon (PR), Negatif Binom Regresyon (NBR), Sıfır Değer Ağırlıklı Negatif Binom Regresyon (ZINB) ve Genelleştirilmiş Poisson Regresyon (GPR) modelleri ele alınarak, bu dört model tahmin edilmiş ve veri setine en iyi uyum sağlayan model bilgi kriterleri ile belirlenmiştir. Tahmin edilen modeller içerisinde veri setine en iyi uyum sağlayan modelin ZINB modeli olduğu belirlenmiştir.