Toll-like receptors (TLRs) are a family of proteins that play a role in innate immune responses by recognising pathogen-associated molecular patterns derived from various microbes. Of these receptors, TLR9 recognises bacterial and viral DNA containing unmethylated cytosine-phosphate-guanine (CpG) motifs, and variation in TLR9 has been associated with resistance to various infectious diseases. Flystrike is a problem affecting the sheep industry globally and the immune response of the sheep has been suggested as one factor that influences the response to the disease. In this study, variation in ovine TLR9 from 178 sheep with flystrike and 134 sheep without flystrike was investigated using a polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) approach. These sheep were collected from both commercial and stud farms throughout New Zealand and they were of 13 different breeds, cross-breds and composites. Four alleles of TLR9 were detected, including three previously identified alleles (*01, *02 and *03) and a new allele (*04). In total six single nucleotide polymorphisms (SNPs) were found. Of the three common alleles in the sheep studied, the presence of *03 was found to be associated with a reduced likelihood of flystrike being present (OR = 0.499, p = 0.024). This suggests that variation in ovine TLR9 may affect a sheep’s response to flystrike, and thus the gene may have value as a genetic marker for improving resistance to the disease.