2020
DOI: 10.3390/molecules25215181
|View full text |Cite
|
Sign up to set email alerts
|

Antibacterial, Antifungal and Ecotoxic Effects of Ammonium and Imidazolium Ionic Liquids Synthesized in Microwaves

Abstract: Ionic liquids are increasingly used for their superior properties. Four water-immiscible ionic liquids (butyltriethylammonium bis(trifluoromethylsulfonyl)imide, octyltriethylammonium bis(trifluoromethylsulfonyl)imide, dodecyltriethylammonium bis(trifluoromethylsulfonyl)imide, butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and their water miscible precursors (bromides) were synthesized in a microwave reactor and by conventional heating. The best conditions for microwave-assisted synthesis concerni… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(2 citation statements)
references
References 56 publications
0
2
0
Order By: Relevance
“…Furthermore, the urgent need to evaluate the antibacterial properties of ILs has also been noticed, in order to screen for new substances with potential pharmacological value that may represent a better alternative to traditional treatment and an advantage regarding the constant increment of antimicrobial resistances that hampers the treatment of several infections. The ability to inhibit the growth of several pathogens has been detected for several common imidazolium, pyridinium, ammonium, piperidinium and pyrrolidiniumbased ILs, among others [22,[24][25][26][27][28][29][30]. Moreover, it is well known that the increment of the alkyl side chain length plays a major role in the antimicrobial potency of ILs, which can be related to a mechanism of cell membrane disruption boosted by the higher hydrophobicity associated with longer alkyl chains-based compounds [27][28][29][30].…”
Section: Introductionmentioning
confidence: 99%
“…Furthermore, the urgent need to evaluate the antibacterial properties of ILs has also been noticed, in order to screen for new substances with potential pharmacological value that may represent a better alternative to traditional treatment and an advantage regarding the constant increment of antimicrobial resistances that hampers the treatment of several infections. The ability to inhibit the growth of several pathogens has been detected for several common imidazolium, pyridinium, ammonium, piperidinium and pyrrolidiniumbased ILs, among others [22,[24][25][26][27][28][29][30]. Moreover, it is well known that the increment of the alkyl side chain length plays a major role in the antimicrobial potency of ILs, which can be related to a mechanism of cell membrane disruption boosted by the higher hydrophobicity associated with longer alkyl chains-based compounds [27][28][29][30].…”
Section: Introductionmentioning
confidence: 99%
“…The microstructure [37] and ecotoxicity of ILs [38,39] are emerging topics of much attention. The conjunction of hydrogen bonding and ionic interactions of the IL forces microstructural directionality.…”
Section: Introductionmentioning
confidence: 99%