High geothermal hazard is a basic problem that must be solved in deep mining; thereby the research on thermal insulation supporting for high temperature control of deep roadway is increasing. However, the quantitative analysis of its thermal insulation effect is yet to be carried out. By building the physical model and control equations of the thermal insulation supporting roadway and considering heat-humidity transfer at wall, the temperature field distribution of surrounding rock and airflow is numerically calculated. Based on numerical simulation results, the evolution law of temperature with ventilation time is analyzed at airflow inlet, outlet, and different sections, then the variation law of surface heat transfer coefficient with position and time is obtained. For heat insulation support structure, the results show that it is not obvious to change the distribution law of temperature field, but it is effective to weaken the convection heat transfer between surrounding rock and airflow. In the main airflow area, the rate of heat exchange gradually decreases with the heat exchange becoming more and more sufficient; in boundary layer, the airflow temperature quickly transits from the wall temperature to that of the main airflow area because of intense collisions of airflow masses, so the mechanism of temperature change is different. The surface heat transfer coefficient well reflected the unstable heat-humidity transfer, especially in the beginning of ventilation or at airflow inlet. Therefore, the heat insulation supporting structure is helpful to the auxiliary cooling of high temperature mine.