2018
DOI: 10.1186/s12966-018-0724-y
|View full text |Cite
|
Sign up to set email alerts
|

An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data

Abstract: BackgroundIncreases in physical activity through active travel have the potential to have large beneficial effects on populations, through both better health outcomes and reduced motorized traffic. However accurately identifying travel mode in large datasets is problematic. Here we provide an open source tool to quantify time spent stationary and in four travel modes(walking, cycling, train, motorised vehicle) from accelerometer measured physical activity data, combined with GPS and GIS data.MethodsThe Examini… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
22
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 21 publications
(23 citation statements)
references
References 28 publications
0
22
0
Order By: Relevance
“…Another major strength was the use of an automated machine learning approach, combining accelerometry and GPS data, to measure travel mode allowing more data points to contribute to the analyses, increasing statistical power to establish the presence or absence of effects. The algorithm has been described previously and has major advantages over previously used manual approaches, which are prohibitively labour intensive particularly in larger studies [22].…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Another major strength was the use of an automated machine learning approach, combining accelerometry and GPS data, to measure travel mode allowing more data points to contribute to the analyses, increasing statistical power to establish the presence or absence of effects. The algorithm has been described previously and has major advantages over previously used manual approaches, which are prohibitively labour intensive particularly in larger studies [22].…”
Section: Discussionmentioning
confidence: 99%
“…Combined ActiGraph accelerometer and GPS travel recorder data were analysed using a previously described automated machine learning algorithm, which allocated each 10-s epoch of combined data to one of four travel modes, quantifying the daily time spent (i) walking, (ii) cycling, (iii) traveling by motorised vehicle (including car/van/bus/motorbike) or (iv) overground train. A fifth category classified recorded time where a journey was not taking place and the participant was stationary, e.g., sitting indoors at home or at work or stationary outside [22]. Gaps in the data due to loss of GPS signal were further classified as "underground" if the GPS signal was lost or regained within close proximity (200 m) of an underground station, and the time lapse between loss and regained signal was from 2 min to 2 h. However, as underground trains in the London transport system also run above ground, so there was potential for misclassification between "underground" and "overground train" modes of travel.…”
Section: Physical Activity and Geographic Locationmentioning
confidence: 99%
See 1 more Smart Citation
“…It should also be acknowledged that accelerometers were accompanied with an effortful diary approach in order to separate work trips from overall acceleration data. In recent studies, combination of accelerometer, GPS, and geographical information systems (GIS) data has been shown as a promising method to predict active travel and to decrease the workload for both participants and researchers [59,60].…”
Section: Discussionmentioning
confidence: 99%
“…Raw Actigraph acceleration data will be extracted as csv files using ActiLife 6 software (Actigraph, FL, USA). Data from these devices will be merged by timestamp using an open-source tool, which will (1) classify different modes of transportation and (2) determine the amount of MVPA attributable to different active transport modes in the merged data [48]. This tool has been found to accurately identify active travel 94.6% of the time in a cross-validation study.…”
Section: Methodsmentioning
confidence: 99%