2016 Sixth International Conference on Digital Information and Communication Technology and Its Applications (DICTAP) 2016
DOI: 10.1109/dictap.2016.7544008
|View full text |Cite
|
Sign up to set email alerts
|

An efficient Genetic Algorithm for the global robot path planning problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0
1

Year Published

2017
2017
2020
2020

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(5 citation statements)
references
References 10 publications
0
4
0
1
Order By: Relevance
“…Differently in [37], the authors modify A * path planning to make the search more efficient in large graph structures. In [38], a genetic algorithm is provided to find a global path in a grid environment. In [39], a CNN method is used on planetary images to derive a global path for interplanetary rovers.…”
Section: A Related Workmentioning
confidence: 99%
“…Differently in [37], the authors modify A * path planning to make the search more efficient in large graph structures. In [38], a genetic algorithm is provided to find a global path in a grid environment. In [39], a CNN method is used on planetary images to derive a global path for interplanetary rovers.…”
Section: A Related Workmentioning
confidence: 99%
“…Ismail et al (2008) have conducted a study in which an idea has been presented for the use of the genetic algorithm in mobile robot navigation, which enables the robot to generate a much-optimized path for reaching the target. Alnasser and Bennaceur (2016) have proposed a new form of genetic algorithm which has been designed for modelling and resolving the problems encountered in path planning. The suggested genetic algorithm makes use of a suitable solution portrayal and effective cross over operation shows a notable increase in the fitness function in various aspects of the motion of the mobile robot.…”
Section: Introductionmentioning
confidence: 99%
“…Una de las técnicas que sobresalen sobre otras en la planificación de caminos son las basadas en algoritmos genéticos, debido a su capacidad de explorar el espacio de búsqueda preservando la mejor solución ya encontrada. En los últimos años muchos planificadores de caminos basados en AG han sido implementados (Hsu & Liu, 2014), (Alnasser & Bennaceur, 2016). Una de las limitaciones presente en estos trabajos es que todos comienzan con una solución inicial aleatoria, o adoptan un método aleatorio para generar una solución inicial válida.…”
Section: Introductionunclassified