We prove several Liouville-type non-existence theorems for higher order Codazzi tensors and classical Codazzi tensors on complete and compact Riemannian manifolds, in particular. These results will be obtained by using theorems of the connections between the geometry of a complete smooth manifold and the global behavior of its subharmonic functions. In conclusion, we show applications of this method for global geometry of a complete locally conformally flat Riemannian manifold with constant scalar curvature because its Ricci tensor is a Codazzi tensor and for global geometry of a complete hypersurface in a standard sphere because its second fundamental form is also a Codazzi tensor.