Consider a compact Riemannian manifold (M, g) with metric g and dimension n ≥ 3. The Schouten tensor A g associated with g is a symmetric (0, 2)-tensor field describing the non-conformally-invariant part of the curvature tensor of g. In this paper, we consider the elementary symmetric functions {σ k (A g ), 1 ≤ k ≤ n} of the eigenvalues of A g with respect to g; we call σ k (A g ) the k-th Schouten curvature function. We give an isometric classification for compact locally conformally flat manifolds which satisfy the conditions: A g is semi-positive definite and σ k (A g ) is a nonzero constant for some k ∈ {2, · · · , n}. If k = 2, we obtain a classification result under the weaker conditions that σ 2 (A g ) is a non-negative constant and (M n , g) has nonnegative Ricci curvature. The corresponding result for the case k = 1 is well known. We also give an isometric classification for complete locally conformally flat manifolds with constant scalar curvature and non-negative Ricci curvature. (2000): Primary 53C20; Secondary 53C25.
Mathematics Subject Classification