The aim of the study is to demonstrate morphological reconstruction of the main arteries of rabbit hind limbs by perivascular implantation of sulfated chitosan in an atherosclerosis model.Materials and Methods. The study was performed on 24 rabbits divided into four groups of 6 animals. The rabbits in the experimental group kept on intensive cholesterol diet for 110 days were implanted 1% water-soluble sulfated chitosan gel in the perivascular fascial compartment of the saphenous artery and the femoral artery of the left hind limb. Some animals that were also kept on cholesterol diet did not undergo implantation. The group of rabbits fed with normal vivarium diet were subjected to perivascular implantation of the biopolymer, while a group of 6 rabbits also kept on normal diet served as the intact control. We estimated wall thickness of the femoral artery and the saphenous artery, their average lumen diameter, the mean lumen area of the newly formed vessels in the adventitia.Results. Daily intensive cholesterol diet for 3.5 months in rabbits leads to vivid signs of atherogenic inflammation forming in the intimal and medial layers of the main arteries of the hind limbs. Introduction of 1% water-soluble sulfated chitosan gel into the paravasal compartment of the saphenous and femoral arteries promotes formation of a large number of microvessels at the polymer resorption site increasing the specific area of new vessels. Morphological reconstruction of the main arteries is achieved through reducing the vascular wall thickness, increasing the vessel lumen and the number of para-adventitial microvessels.Conclusion. Implantation of sulfated chitosan into the perivascular compartment allows achieving the effect of therapeutic paravasal angiogenesis and inhibiting the early signs of atherogenic inflammation.Key words: atherogenic inflammation; perivascular implantation of chitosan; ischemia of the hind limbs; therapeutic angiogenesis; morphological reconstruction of the vessel wall; biodegradable polymer.