Utilizing the “ideal” ionic liquid salt bridge to measure Gibbs energies of transfer of silver ions between the solvents water, acetonitrile, propylene carbonate and dimethylformamide results in a consistent data set with a precision of 0.6 kJ mol−1 over 87 measurements in 10 half‐cells. This forms the basis for a coherent experimental thermodynamic framework of ion solvation chemistry. In addition, we define the solvent independent peabsH2normalO
‐ and the EabsH2normalO
values that account for the electronating potential of any redox system similar to the pHabsH2normalO
value of a medium that accounts for its protonating potential. This EabsH2normalO
scale is thermodynamically well‐defined enabling a straightforward comparison of the redox potentials (reducities) of all media with respect to the aqueous redox potential scale, hence unifying all conventional solvents′ redox potential scales. Thus, using the Gibbs energy of transfer of the silver ion published herein, one can convert and unify all hitherto published redox potentials measured, for example, against ferrocene, to the EabsH2normalO
scale.