Currently, many investigations are being performed to develop dressing materials with a positive effect on the wound healingprocess. In general, innovative dressings should ensure wound exudate absorption, constitute an external barrier limiting thepossibility of wound contamination and, importantly, also provide therapeutic properties. This work is focused on obtainingmaterials with potential use as dressings for treatment of difficult-to-heal wounds. The synthesis methodology of acrylic hydrogelsmodified with selected modifiers, i.e. arabic gum, nanogold, bee pollen and chamomile extract, was developed. Next, thesorption properties of the materials were determined as well as their behavior during the incubation in fluids imitating theenvironment of the human body. Additionally, the impact of such an incubation on their structure was evaluated by FT-IR spectroscopy.It was proved that the modifiers affected the sorption properties of hydrogels, i.e. samples with additives showed evenapprox. 2.5-fold lower swelling ability. In turn, incubation of hydrogels in simulated body fluids did not cause any rapid changesin pH, which may indicate the biocompatibility of the tested materials with the tested fluids. Thus, it may be concluded that thedeveloped materials show great application potential for biomedical purposes and may be subjected to more advanced studiessuch as cytotoxicity assessments towards selected cell lines.