1995
DOI: 10.1016/0167-8191(95)00019-k
|View full text |Cite
|
Sign up to set email alerts
|

A scalable eigenvalue solver for symmetric tridiagonal matrices

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
2

Year Published

1995
1995
2016
2016

Publication Types

Select...
3
3
1

Relationship

1
6

Authors

Journals

citations
Cited by 15 publications
(4 citation statements)
references
References 20 publications
0
2
0
2
Order By: Relevance
“…Since symmetric tridiagonal matrices with zero diagonal specify their eigenvalues with high relative accuracy independently of their magnitudes [7] numerical methods can possibly compute these eigenvalues at the same relative accuracy they are determined by the input data. Relatively accurate polynomial zerofinders based on Laguerre's iteration are considered in [4,8] while GR-type matrix methods are devised in [7,9]. Similar results do not hold for a general symmetric tridiagonal whose entries do not determine its eigenvalues to high relative accuracy.…”
Section: Introductionmentioning
confidence: 87%
“…Since symmetric tridiagonal matrices with zero diagonal specify their eigenvalues with high relative accuracy independently of their magnitudes [7] numerical methods can possibly compute these eigenvalues at the same relative accuracy they are determined by the input data. Relatively accurate polynomial zerofinders based on Laguerre's iteration are considered in [4,8] while GR-type matrix methods are devised in [7,9]. Similar results do not hold for a general symmetric tridiagonal whose entries do not determine its eigenvalues to high relative accuracy.…”
Section: Introductionmentioning
confidence: 87%
“…The algorithm employs the split-merge process, similar to Cuppen's divide-and-conquer strategy, which provides an excellent set of starting values that make the algorithm naturally parallel. Impressive speedups of the parallel version of the algorithm were reported in 15]. For 2, 000 2, 000 random matrices, the algorithm can reach a speedup of 52 on an N-cube with 64 nodes.…”
mentioning
confidence: 93%
“…A continuación fueron presentados muchos otros resultados para el cálculo de la DVS de una matriz: [Arbenz, 1989], [Fernando y Parlett, 1994], [Gu y Eisenstat, 1995a], , [Tre¤tz et al, 1995], [Lang, 1996], [Demmel et al, 1999b], [Fernando, 1998a], [Fernando, 1998b], [Groß er y Lang, 1999], [Groß er y Lang, 2003], [Drmaµ c y Veselić, 2007a], [Drmaµ c y Veselić, 2007b], [Willems et al, 2006], [Howell et al, 2008] y [Demmel et al, 2009].…”
Section: Un Poco De La Historiaunclassified
“…donde U y V son las matrices ortogonales de la bidiagonalización, existen distintos métodos [Arbenz, 1989], [Gu y Eisenstat, 1995a], [Tre¤tz et al, 1995], [Fernando, 1998a], [Fernando, 1998b], [Groß er y Lang, 2003], [Willems et al, 2006] y entre ellos se van a describir los siguientes:…”
Section: Dvs De La Matriz Bidiagonalunclassified