2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) 2017
DOI: 10.1109/iciiecs.2017.8276182
|View full text |Cite
|
Sign up to set email alerts
|

A review on recommender systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 32 publications
(9 citation statements)
references
References 3 publications
0
4
0
2
Order By: Relevance
“…Scalability: Collaborative Filtering use massive amount of data to make reliable better which require more number of resources. As information grows exponentially processing becomes expensive and inaccurate result from this Big data challenge [14]. Rest sections of this paper are organized as follows: In section 1, types of filtering techniques and their subtypes are discussed with detail survey and comparison.…”
Section: Challengesmentioning
confidence: 99%
“…Scalability: Collaborative Filtering use massive amount of data to make reliable better which require more number of resources. As information grows exponentially processing becomes expensive and inaccurate result from this Big data challenge [14]. Rest sections of this paper are organized as follows: In section 1, types of filtering techniques and their subtypes are discussed with detail survey and comparison.…”
Section: Challengesmentioning
confidence: 99%
“…Los SRs se clasifican en diferentes categorías de acuerdo al tipo de información que se utiliza para recomendar productos y/o servicios a los usuarios [18]. En la literatura se puede encontrar una diversidad de técnicas para implementar los SRs por ejemplo en la Fig.…”
Section: Trabajos Relacionadosunclassified
“…Los principales enfoques que se emplean es el Filtro Colaborativo y el Filtro Basado en Contenido, pero ambos tienen algunas limitaciones y problemas. Mansur y Patel [18] en su trabajo de investigación dan un panorama general de los Sistemas de Recomendación, donde describieron los principales enfoques, problemas y limitaciones existentes. Así que en la mayoría de las aplicaciones que ocupan un SR se utiliza un enfoque híbrido, que combina diferentes técnicas para mejorar el funcionamiento del sistema, donde su idea principal es generar recomendaciones con una mejor exactitud y eficiencia; en cambio cuando se aplica un solo algoritmo es posible obtener resultados inexactos y poco confiables.…”
Section: Trabajos Relacionadosunclassified
“…In practice, collaborative filtering tends to perform better than content filtering because of the richness of the rating history, which allows to discover latent features in the data and to go beyond what most user and item features can offer [7]. However, this dependency on the rating history often leads to the cold start problem [8]: recommendations to new users (or of new items) may not be good due to the lack of sufficient ratings, thus holding back new users from joining the platform. On the contrary, for users that have rated items for a long time, predictions might not be accurate anymore because they are based on old ratings, which leads to the problem called concept drift [9,10].…”
Section: Introductionmentioning
confidence: 99%