Current state of the art algorithms for recommender systems are mainly based on collaborative filtering, which exploits user ratings to discover latent factors in the data. These algorithms unfortunately do not make effective use of other features, which can help solve two well identified problems of collaborative filtering: cold start (not enough data is available for new users or products) and concept shift (the distribution of ratings changes over time). To address these problems, we propose Modurec: an autoencoder-based method that combines all available information using the feature-wise modulation mechanism, which has demonstrated its effectiveness in several fields. While time information helps mitigate the effects of concept shift, the combination of user and item features improve prediction performance when little data is available. We show on Movielens datasets that these modifications produce state-of-the-art results in most evaluated settings compared with standard autoencoder-based methods and other collaborative filtering approaches.
With the increasing amount of available data and advances in computing capabilities, deep neural networks (DNNs) have been successfully employed to solve challenging tasks in various areas, including healthcare, climate, and finance. Nevertheless, state-of-the-art DNNs are susceptible to quasi-imperceptible perturbed versions of the original images -adversarial examples. These perturbations of the network input can lead to disastrous implications in critical areas where wrong decisions can directly affect human lives. Adversarial training is the most efficient solution to defend the network against these malicious attacks. However, adversarial trained networks generally come with lower clean accuracy and higher computational complexity. This work proposes a data selection (DS) strategy to be applied in the mini-batch training. Based on the cross-entropy loss, the most relevant samples in the batch are selected to update the model parameters in the backpropagation. The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy, whereas the computational complexity of the backpropagation pass is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.