2007
DOI: 10.1002/num.20298
|View full text |Cite
|
Sign up to set email alerts
|

A numerical method based on integro‐differential formulation for solving a one‐dimensional Stefan problem

Abstract: A numerical method based on an integro-differential formulation is proposed for solving a one-dimensional moving boundary Stefan problem involving heat conduction in a solid with phase change. Some specific test problems are solved using the proposed method. The numerical results obtained indicate that it can give accurate solutions and may offer an interesting and viable alternative to existing numerical methods for solving the Stefan problem.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2012
2012
2020
2020

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 15 publications
0
1
0
1
Order By: Relevance
“…A good summary of the different models can be found in the monograph (Dybkov, 2010). There is also a class of problems in heat transfer that are analogous to such reaction controlled diffusion such as melting of ice and solidification (Reemtsen and Kirsch, 1984;Caldwell and Kwan, 2004;Ramos, 2005;Ang, 2008;Caldwell and Kwan, 2009).…”
Section: Introductionmentioning
confidence: 97%
“…A good summary of the different models can be found in the monograph (Dybkov, 2010). There is also a class of problems in heat transfer that are analogous to such reaction controlled diffusion such as melting of ice and solidification (Reemtsen and Kirsch, 1984;Caldwell and Kwan, 2004;Ramos, 2005;Ang, 2008;Caldwell and Kwan, 2009).…”
Section: Introductionmentioning
confidence: 97%
“…Точность приближенных решений проверяется на основе их сравнения с аналогичными численными решениями. В отличие от работы [8], в которой коэффициент теплообмена задается в виде функции ( ) / , h t h t = примем постоянство коэффициента теплообмена во времени и плавное изменение температуры среды по экспоненциальному закону [12].…”
unclassified