This paper presents a super-efficient spatially adaptive contrast enhancement algorithm for enhancing infrared (IR) radiation based superficial vein images in real-time. The super-efficiency permits the algorithm to run in consumer-grade handheld devices, which ultimately reduces the cost of vein imaging equipment. The proposed method utilizes the response from the low-frequency range of the IR image signal to adjust the boundaries of the reference dynamic range in a linear contrast stretching process with a tunable contrast enhancement parameter, as opposed to traditional approaches which use costly adaptive histogram equalization based methods. The algorithm has been implemented and deployed in a consumer grade Android-based mobile device to evaluate the performance. The results revealed that the proposed algorithm can process IR images of veins in real-time on low-performance computers. It was compared with several well-performed traditional methods and the results revealed that the new algorithm stands out with several beneficial features, namely, the fastest processing, the ability to enhance the desired details, the excellent illumination normalization capability and the ability to enhance details where the traditional methods failed.