The CG research community has a renewed interest on rendering algorithms based on path space integration, mainly due to new approaches to discover, generate and exploit relevant light paths while keeping the numerical integrator unbiased or, at the very least, consistent. Simultaneously, the current trend towards massive parallelism and heterogeneous environments, based on a mix of conventional computing units with accelerators, is playing a major role both in HPC and embedded platforms. To efficiently use the available resources in these and future systems, algorithms and software packages are being revisited and reevaluated to assess their adequateness to these environments.This paper assesses the performance and scalability of three different path based algorithms running on homogeneous servers (dual multicore Xeons) and heterogeneous systems (those multicore plus manycore Xeon and NVidia Kepler GPU devices). These algorithms include path tracing (PT), its bidirectional counterpart (BPT) and the more recent Vertex Connect and Merge (VCM). Experimental results with two conventional scenes (one mainly diffuse, the other exhibiting specular-diffuse-specular paths) show that all algorithms scale well across the different platforms, the actual scalability depending on whether shared data structures are accessed or not (PT vs. BPT vs. VCM).