2017
DOI: 10.1016/j.cam.2016.05.008
|View full text |Cite
|
Sign up to set email alerts
|

A feasible primal–dual interior point method for linear semidefinite programming

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 20 publications
(10 citation statements)
references
References 14 publications
0
8
0
1
Order By: Relevance
“…In this section, we give some numerical results to see some advantages of using the mentioned new kernel function. The results are obtained by performing of Algorithm1 with the proposed kernel function on some test problems given in [9,33,34,35]. Also the obtained results are compared with the one generated by other eight famous kernel function which presented in Table 1.…”
Section: Numerical Resultsmentioning
confidence: 99%
“…In this section, we give some numerical results to see some advantages of using the mentioned new kernel function. The results are obtained by performing of Algorithm1 with the proposed kernel function on some test problems given in [9,33,34,35]. Also the obtained results are compared with the one generated by other eight famous kernel function which presented in Table 1.…”
Section: Numerical Resultsmentioning
confidence: 99%
“…If µ → 0, then the limit of the central path exist. Since the limit points satisfy the complementarity condition, the limit yields optimal solutions for (P) and (D) (see, e.g., [5,24]).…”
Section: Proposition 25 [12]mentioning
confidence: 99%
“…They not only have polynomial complexity, but also are highly efficient in practice. They motivate researchers to elaborate extensions for more general classes of optimization problems: the linear complementarity problem (LCP) [2], the convex programming problem (CP) [3] and the semidefinite programming problem (SDP) [4,5,6].…”
Section: Introductionmentioning
confidence: 99%
“…Además, las aplicaciones de este tipo de algoritmos no se limitan a problemas PL. Por ejemplo, Klintberg y Gros (2016) recurren a uno para enfrentar problemas de control óptimo en procesos industriales, Wu et al (2016) utilizan un algoritmo de punto interior para optimización del flujo de energía eléctrica, Touil et al (2017) proponen un algoritmo primal-dual (de punto interior) para solucionar problemas de programación semidefinida. Finalmente, Dattaa et al (2017) incorporan un procedimiento de punto interior para solucionar problemas de optimización multiobjetivo en regiones no convexas.…”
Section: Introductionunclassified