BackgroundMaternal pre-conception obesity is a strong risk factor for childhood overweight. However, prenatal mechanisms and their effects in susceptible gestational periods that contribute to this risk are not well understood. We aimed to assess the impact of late-pregnancy dysglycemia in obese pregnancies with negative testing for gestational diabetes mellitus (GDM) on long-term mother–child outcomes.Methods and findingsThe prospective cohort study Programming of Enhanced Adiposity Risk in Childhood–Early Screening (PEACHES) (n = 1,671) enrolled obese and normal weight mothers from August 2010 to December 2015 with trimester-specific data on glucose metabolism including GDM status at the end of the second trimester and maternal glycated hemoglobin (HbA1c) at delivery as a marker for late-pregnancy dysglycemia (HbA1c ≥ 5.7% [39 mmol/mol]). We assessed offspring short- and long-term outcomes up to 4 years, and maternal glucose metabolism 3.5 years postpartum. Multivariable linear and log-binomial regression with effects presented as mean increments (Δ) or relative risks (RRs) with 95% confidence intervals (CIs) were used to examine the association between late-pregnancy dysglycemia and outcomes. Linear mixed-effects models were used to study the longitudinal development of offspring body mass index (BMI) z-scores. The contribution of late-pregnancy dysglycemia to the association between maternal pre-conception obesity and offspring BMI was estimated using mediation analysis. In all, 898 mother–child pairs were included in this unplanned interim analysis. Among obese mothers with negative testing for GDM (n = 448), those with late-pregnancy dysglycemia (n = 135, 30.1%) had higher proportions of excessive total gestational weight gain (GWG), excessive third-trimester GWG, and offspring with large-for-gestational-age birth weight than those without. Besides higher birth weight (Δ 192 g, 95% CI 100–284) and cord-blood C-peptide concentration (Δ 0.10 ng/ml, 95% CI 0.02–0.17), offspring of these women had greater weight gain during early childhood (Δ BMI z-score per year 0.18, 95% CI 0.06–0.30, n = 262) and higher BMI z-score at 4 years (Δ 0.58, 95% CI 0.18–0.99, n = 43) than offspring of the obese, GDM-negative mothers with normal HbA1c values at delivery. Late-pregnancy dysglycemia in GDM-negative mothers accounted for about one-quarter of the association of maternal obesity with offspring BMI at age 4 years (n = 151). In contrast, childhood BMI z-scores were not affected by a diagnosis of GDM in obese pregnancies (GDM-positive: 0.58, 95% CI 0.36–0.79, versus GDM-negative: 0.62, 95% CI 0.44–0.79). One mechanism triggering late-pregnancy dysglycemia in obese, GDM-negative mothers was related to excessive third-trimester weight gain (RR 1.72, 95% CI 1.12–2.65). Furthermore, in the maternal population, we found a 4-fold (RR 4.01, 95% CI 1.97–8.17) increased risk of future prediabetes or diabetes if obese, GDM-negative women had a high versus normal HbA1c at delivery (absolute risk: 43.2% versus 10.5%). There is a potent...