Introduction: Vaccines are one of the most effective means of preventing infectious diseases. Their effectiveness and safety are guaranteed by studies of vaccine properties, during their development and during the mandatory preclinical and clinical trials of each new vaccine. Additional information on the mechanisms of vaccine action on human immune system cells can be obtained using in vitro immune response models. The objective of the study was to determine applicability of certain methods of studying human dendritic cells in vitro to assessing the effect of vaccines. Dendritic cells are the most active antigen presenting cells, which play a key role in triggering a primary immune response to an infection or vaccine. Materials and methods: We studied the effect of vaccines on the maturation of dendritic cells, their phagocytic activity and the ability to stimulate T-lymphocytes in vitro. Results: To test the methods, we used vaccines with a known pattern of action on the immune system. All the vaccines induced the expression of dendritic cell maturation markers. At the same time, different vaccines induced a different set of markers and the degree of expression of these molecules. Quantitative methods for assessing phagocytosis and stimulating activity of dendritic cells are described. Conclusion: Methods for evaluation of phagocytosis, phenotypic maturation and functional properties of dendritic cells have been shown to be useful for evaluation of vaccine action. In our opinion, these methods, as a complement to traditional methods for evaluating the immune response, can be used to investigate the action of prototype vaccines at the stage of their development and preclinical trials.