2012
DOI: 10.1590/s0104-14282012005000056
|View full text |Cite
|
Sign up to set email alerts
|

Self-reinforced bioresorbable polymer P (L/DL) LA 70:30 for the manufacture of craniofacial implant

Abstract: Abstract:The importance of self-reinforced bioabsorbable polymers has been growing due to their use in orthopedic and dental implants. Bioabsorbable polymeric implants manufactured only by the processes of injection or extrusion without the post processing of self-reinforcing leave a great deal on presenting an appealing alternative in terms of the mechanical strength suitable for use in the fixation of bone fractures. One of the most promising ways to promote the increase of mechanical properties of bioresorb… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2013
2013
2023
2023

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…Among bioresorbable polymers of interest is the copolymer poly (L,co-D,L-lactic acid; PLDLA) that is widely used in the proportion 70:30 because of its good mechanical properties and excellent biocompatibility. This polymer has been the subject of study of this research group and its synthesis is already consolidated so that the polymer has high molecular weight [7][8][9][10][11][12][13][14] . Though PLA is limited by its inherent brittleness, its properties can be significantly enhanced and broadened by modification via copolymerization, which provides a number of advantages because the architecture and composition of the biomaterials can be tailored to control and composition of the biomaterials can be tailored to control the material properties (by anionic or coordinated polymerization) 15 .…”
Section: Introductionmentioning
confidence: 99%
“…Among bioresorbable polymers of interest is the copolymer poly (L,co-D,L-lactic acid; PLDLA) that is widely used in the proportion 70:30 because of its good mechanical properties and excellent biocompatibility. This polymer has been the subject of study of this research group and its synthesis is already consolidated so that the polymer has high molecular weight [7][8][9][10][11][12][13][14] . Though PLA is limited by its inherent brittleness, its properties can be significantly enhanced and broadened by modification via copolymerization, which provides a number of advantages because the architecture and composition of the biomaterials can be tailored to control and composition of the biomaterials can be tailored to control the material properties (by anionic or coordinated polymerization) 15 .…”
Section: Introductionmentioning
confidence: 99%