A classic dilemma in taxonomy is distinguishing intraspecific from interspecific variation. In order to better comprehend the process of divergence and speciation, we examine morphological, genetic, developmental and behavioural variation among related fiddler crab populations from eastern North America, the Caribbean and South America. We chose geographically remote populations that appear related to Minuca rapax (Smith, 1870). First, using females from across the range of the species, we use geometric morphometric techniques to identify regional differences in carapace shape. Second, in the northern portion of the range, the Caribbean into the Gulf of Mexico, we report variation in the relationship between corporal size and cheliped length in males. Third, we examine the major components of the courtship waves produced by males from several locations in the western Gulf of Mexico. Fourth, we compare the structure of the gastric mill between different populations in the Gulf of Mexico, the Caribbean and the Atlantic Ocean. And, fifth, we use mitochondrial 16S rDNA and cytochrome oxidase subunit I as genetic markers to define the phylogeographic relationship among specimens from more than 20 populations. From these studies, we find discrete, distinct populations across the original range of the species. In particular, populations in the northern Gulf of Mexico appear to represent a lineage that has resulted from limited gene flow and sustained selection pressures. On the basis of the observed degree of divergence, it is apparent that some separated populations in M. rapax should be recognised as evolutionary significant units. The geographic range of these populations is consistent with the historical range for Minuca virens (Salmon & Atsaides, 1968), a putative species that otherwise cannot be consistently distinguished from M. rapax based on discrete external morphological characters. This study provides evidence for M. virens as an emergent but possibly not completely isolated subclade of the M. rapax species complex.