Spinocerebellar ataxias (SCAs) are autosomal dominant neurodegenerative disorders which disrupt the afferent and efferent pathways of the cerebellum that cause cerebellar ataxia. Spectrin beta non-erythrocytic 2 (SPTBN2) gene encodes the β-III spectrin protein with high expression in Purkinje cells that is involved in excitatory glutamate signaling through stabilization of the glutamate transporter, and its mutation is known to cause spinocerebellar ataxia type 5. Three years and 5 months old boy with delayed development showed leukodystrophy and cerebellar atrophy in brain magnetic resonance imaging (MRI). Diagnostic exome sequencing revealed that the patient has heterozygous mutation in SPTBN2 (p.Glu1251Gln) which is a causative genetic mutation for spinocerebellar ataxia type 5. With the patient's clinical findings, it seems reasonable to conclude that p.Glu1251Gln mutation of SPTBN2 gene caused spinocerebellar ataxia type 5 in this patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.