In this study, combustion and smoke characteristics according to the aging of class 1E cables in nuclear power plants were analyzed through a cone calorimeter test. In the case of combustion characteristics, during the early period, which was the first peak of the heat release rate, the peak value of the non-aged cable was higher by approximately 20-50 kW/m<sup>2</sup> than that of aged cables. However, in the mid-late periods, which was the second peak, the value of the aged cables were higher than the non-aged cable due to the decrease in flame retardant performance with aging deterioration. In addition, the duration of the char layer of the aged cables was shortened by 200 s than that of the non-aged cables due to the unstable formation of char layer. The total heat release measured was approximately 1.4 times higher in the aged cables than in the non-aged cables. In the case of smoke characteristics, the smoke production rate and total smoke release show a similar trend with the heat release rate and total heat release. The total smoke release of the aged cables was measured to be higher than that of the non-aged cables. The tendency of the smoke factor increased with aging deterioration, and the values of the smoke factor in the aged cables beyond 4 years were approximately 1.76-2.0 times different from those in the non-aged cables. Consequently, the smoke risk increased with aging deterioration. Therefore, the risk of heat and smoke release increased as aging progressed.
We present a real-time GPU(Graphic Processing Unit) marching tetrahedra technique that extracts isosurfaces in the indexed mesh format from BCC(Body Centered Cubic) volume datasets. Compared to classical marching tetrahedra, our method shows better performance with little memory overhead. Our technique is composed of five stages. In the first stage, which needs to be done only once, we build min/max blocks that is to be used for empty space skipping to boost the performance. Next, we extract active blocks that contain the current isovalue. In the next two stages, we extract the edges and cells that contain the isosurface and then the final triangular mesh is generated in the last stage. When applied 512 3 or higher resolution volume dataset, our technique shows up to 5 times speed improvement compared to the classical marching tetrahedra algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.