In order to obtain new-type laser crystals, SrY2O4 is chosen as a host material. Because Y3+ ions in SrY2O4 occupy two non-equivalent sites, it might be possible to realize dual-wave laser and broadband emission at 1.06 m by partially replacing Y3+ with Nd3+. In this work, (3 at.%) Nd3+ doped SrY2O4 phosphor is synthesized by the conventional solid state reaction. The structure and luminescence properties in the visible and near-infrared ranges are studied. The peaks in the X-ray powder diffraction pattern of (3 at.%) Nd3+:SrY2O4 can be well indexed according to ICSD#25701. The lattice parameters, atomic coordinates, atomic temperature factors etc., are obtained by the Rietveld refinement with R_p of 4.68% and R_wp of 5.91%. According to the excitation spectra in a range of 220-380 nm, it can be seen that Nd3+:SrY2O4 is efficiently excited by 353 nm which is assigned to the 4I9/24D3/2+4D5/2+2I11/2+4D1/2 transition of Nd3+ ions. Under the 353 nm light excitation, Nd3+:SrY2O4 exhibits the strongest emission at 419 nm corresponding to the 2D15/24I9/2 transition of Nd3+ ions. What is more, Nd3+:SrY2O4 can be excited effectively by 824 nm light, which matches well with the commercial 830 nm diode laser. When excited with 824 nm, the strongest fluorescence peak is located at 1083 nm with a wide bandwidth of about 90 nm. Compared with that at 8~K, the bandwidth in the fluorescence spectrum at 300 K is broadened because of the homogeneous broadening induced by the increase of temperature. Additionally, the peaks corresponding to the 4F3/24I11/2 transition are split into two groups at 8~K, which results from the two non-equivalent sites of Nd3+ ions. Compared with Nd3+:YAG, Nd3+:SrY2O4 has more potential applications in the tunable and ultrashort lasers. The fluorescence lifetime of the 4F3/24I11/2 transition of (3 at.%) Nd3+:SrY2O4 is 281.7 s, which shows slight concentration quenching compared with that of (0.5 at.%) Nd3+:SrY2O4. The fluorescence lifetime of (3 at.%) Nd3+:SrY2O4 is much longer than that of (0.6 at.%) Nd3+:YAG which is beneficial to the energy storage. In conclusion, the wide emission band and the long decay time of 1.08 m indicate that Nd3+:SrY2O4 is a very promising new-wavelength and ultrashort laser material pumped by laser diode.
LiB3O5 and CsB3O5 are two excellent nonlinear optical borate crystals containing [B3O7] groups. With a difference of aikali metal ions in structure, LiB3O5 and CsB3O5 exhibit different crystallization habits. The former is an incongruent compound, which cannot crystallize from its melt; however, the latter is a congruent compound obtained by cooling its melt directly. In this work, using Raman spectroscopy and ab initio calculation, the structures of LiB3O5 and CsB3O5 melts have been investigated, and then the influence of alkali metal ions on melt structures is discussed, finally, the relationship between crystallization habits of LiB3O5 and CsB3O5 and their melts is proposed. Results suggest that the boron oxide species of LiB3O5 and CsB3O5 melts are in the form of six-membered rings B3Ø7 and B3Ø6 (Ø represents a bridging oxygen); Raman frequency of the symmetric breathing vibration of six-membered rings shifts to low frequency with the addition of BØ4 tetrahedrons in rings; the relatively large amount of BØ4 tetrahedrons is found in LiB3O5 melts. However, Cs+ ions with larger ion radius hinder the formation of BØ4 tetrahedrons, and then reduc, the BØ4/BØ3 ratio of the melt. Finally, considering the growth mechanism of LiB3O5 and CsB3O5 crystals (Wang D, Wan S M et al. 2011 Cryst. Eng. Comm. 13 5239), we propose that the amount of BØ4 tetrahedrons in melts, which is influenced by aikali metal ions, determines LiB3O5 and CsB3O5 crystallization habits, therefore, and suggest the reduction of BØ4 tetrahedrons in melts is an effective way to crystallize LiB3O5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.