For the first time, the interaction potentials of the He-HF(DF,TF) van der Waals complexes have been obtained by center of mass transformation and then employing Murrell-Sorbie potential function to fit the accurate interaction energy data, which have been computed at symmetry-adapted perturbation theory (SAPT) level. On the basis of the above results, the close coupling calculation of scattering cross sections for collision of He with HF(DF,TF) is performed by employing the fitted interaction potential. This calculation is performed at the incident energies of 50, 59.5, 86, 100 and 120 meV, respectively. The information of the elastic, inelastic and total integral cross sections were obtained, and the change tendency and characteristics of scattering cross section are discussed for He-HF(DF,TF)collision system.
Tang-Toennies potential model and close-coupling method were applied to the He-H2(D2,T2) system,and the vibrational and rotational excitation cross sections at different incidence energy have been calculated.By analyzing the differences of these partial wave cross sections, the change rules of the partial wave cross sections with increase of quantum number, and with change of reduced mass of symmetric isotopic substituted system have been obtained. Based on the calculation, influence on the cross sections exerted by the variations in the reduced mass of systems and in the relative incoming energy of incident atom is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.