Севастопольский государственный университет, Севастополь, Российская Федерация В данной статье представлен новый подход к анализу динамической устойчивости прямоугольных ортотропных пластин. В частности, в приближении теории плоских сечений исследуется проблема флаттера для ортотропной панели в сверхзвуковом потоке газа, которая сводится к краевой задаче для несимметричного дифференциального оператора. С целью улучшения стандартной процедуры вычислений методом Бубнова-Галеркина предлагается в качестве базисных функций этого метода использовать собственные формы колебаний прямоугольной ортотропной пластины в вакууме, для которых автором получены новые аналитические представления. Согласно данному подходу краевая задача сводится к однородной бесконечной системе линейных алгебраических уравнений. На основе асимптотического анализа и теории регулярных бесконечных систем линейных алгебраических уравнений разработан точный и эффективный алгоритм построения собственных форм пластины в вакууме. Таким образом, в статье обсуждаются как алгоритм построения базисных функций метода Бубнова-Галеркина, так и алгоритм определения критического значения параметра скорости, при котором имеет место динамическая неустойчивость. Численно изучается сходимость метода Бубнова-Галеркина в зависимости от параметров задачи. Результаты численного моделирования показывают, что при изменении значений сил в плоскости пластины и упругих свойств материала хорошая сходимость метода может быть достигнута при первых 16-ти базисных функциях. Аналогичная сходимость метода наблюдается и для удлиненной пластины. Вычислительная эффективность метода иллюстрируется примерами.
A refined solution of the elastoplastic problem of an insulated mode I crack in a thin plate of reasonably large dimensions is obtained. Estimates of the plastic zone in the vicinity of the crack tip are given for quasiviscous and viscous types of fracture.Key words: crack, plastic zone, quasibrittle, quasiviscous fracture, viscous fracture.1. Formulation of the Problem. Let an infinite thin plate with an insulated crack be loaded by remote tensile constant stresses σ ∞ symmetric about the x axis. The crack is modeled by a bilateral cut of length 2l 0 [1]. From the viewpoint of applied mechanics, it is reasonable to describe the prefracture zone ahead of the crack tip by two geometrical parameters: the length ∆ and width h of this zone [2]. In [2,3], the types of fracture are classified according to the length of the prefracture zone ∆ to the crack length l 0 as follows: brittle fracture (∆ = 0),We identify the prefracture zone with the plastic zone. This problem has an approximate solution, which provides reasonable accuracy for the cases of brittle and quasibrittle fracture [1], where the remote stress is known to be smaller than the yield stress. In this case, by virtue of the inequality σ ∞ σ m (σ m is the yield stress), the formulas for the stresses do not contain the regular term, namely, the stress σ ∞ [1]. However, for the quasiviscous and viscous types of fracture, for which ∆ ≈ l 0 , σ ∞ = O(σ m ) and l 0 < ∆, σ ∞ ≈ σ m (σ ∞ < σ m ), respectively, the approximate solution gives poor accuracy. Our aim is to refine the solution of the problem formulated above and estimate the dimension of the plastic zone in the vicinity of the crack tip using this solution.2. Stresses in a Plate with a Crack. The algorithm for determining the stresses in a thin plate with a crack consists of two stages. In the first stage, the plate without a crack is loaded by remote tensile stresses σ ∞ . In the second stage, the crack is modeled by loading the segment y = 0, |x| l 0 f by forces equal but opposite to the forces obtained in the first stage, i.e., by compressive forces −σ ∞ . The desired solution of the problem is the sum of the solutions obtained in the two stages. For the first stage, the solution is given byIn the second stage, the following boundary conditions are formulated at the crack line y = 0, |x| l 0 :For the second stage, the stress-tensor components are given by [1] σ xx = Re Z 1 − y Im [Z 1 ], σ yy = Re Z 1 + y Im [Z 1 ], σ xy = −y Re [Z 1 ].(1)
The problem of compression of a thin plate with an elliptic hole is considered. It is assumed that increasing the distant compressive load can lead to contact of opposite regions of the boundaries of the ellipse. The problem is solved within the framework of a modified Leonov-Panasyuk-Dugdale model and an elastoplastic analog of the Griffith problem for an ellipse using the Goodier and Kanninen model. The critical fracture parameters providing an equilibrium configuration of the system are determined from a sufficient strength criterion representing a system of two equations, one of which specifies the absence of partial overlapping of the upper and lower surfaces of the contact zone, and the other is a deformation criterion of critical opening of the ellipse. The compression-induced deformation of the boundaries of ellipses with various curvature radii at the top is shown by the example of annealed copper having nanostructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.