By integrating imaging and drug-delivery in a single system, fluorescent nano-multifunctional imaging platforms can offer simultaneous diagnosis and therapy to diseases like cancer. However, the synthesis of such system involves a tedious, time-consuming, and multi-step process. Herein we report a facile method based on simple ultrasonication to synthesize highly cross-linked, monodispersed fluorescent polyphosphazene nanoparticles from hexachlorocyclotriphosphazene (HCCP) and dichlorofluorescein (FD). Various functional groups (folic acid, PEG-NH, and methylene blue) can be "fastened" in situ onto the poly(cyclotriphosphazene-co-dichlorofluorescein) (PCTPDF) nanoparticles to expand its application as nano-multifunctional platform. All the nanoparticles were characterized spectrophotometrically, and morphology was established by the images obtained from scanning electron microscope (SEM). The synthesized multifunctional nanoparticles exhibited low toxicity and penetrated through the cytomembranes of human colon cancer (HCT 116) cells. When applied to in vivo tumor imaging using biologically engineered mouse model, methylene blue functionalized (PCTPDF@MB) nanoparticles exhibited excellent photodynamic activity and imaging ability. Thus, PCTPDF nanoplatform based on multi-functional fluorescent nanoparticles might offer an efficient solution to new age theranostics. Apart from diagnostics application, PCTPDF, as a nanoplatform, could also be utilized to achieve more comprehensive application in modern analytic chemistry. Graphical Abstract The table of contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.