Transcription of lymphokine genes in activated T cells is inhibited by the immunosuppressive agents cyclosporin A and FK506, which act by blocking the phosphatase activity of calcineurin. NFAT, a DNA-binding protein required for interleukin-2 gene transcription, is a potential target for calcineurin, cyclosporin A and FK506. NFAT contains a subunit (NFATp) which is present in unstimulated T cells and which forms a complex with Fos and Jun proteins in the nucleus of activated T cells. Here we report that NFATp is a DNA-binding phosphoprotein of relative molecular mass approximately 120,000 and is a substrate for calcineurin in vitro. Purified NFATp forms DNA-protein complexes with recombinant Jun homodimers or Jun-Fos heterodimers; the DNA-binding domains of Fos and Jun are essential for the formation of the NFATp-Fos-Jun-DNA complex. The interaction between the lymphoid-specific factor NFATp and the ubiquitous transcription factors Fos and Jun provides a novel mechanism for combinatorial regulation of interleukin-2 gene transcription, which integrates the calcium-dependent and the protein-kinase C-dependent pathways of T-cell activation.
Background: Women who are genetically predisposed to ovarian cancer are at very high risk of developing this disease. Although risk-reducing salpingo-oophorectomy (RRSO) and various screening regimens are currently recommended to reduce ovarian cancer risk, the optimal management strategy has not been established nor have multiple additional issues been adequately addressed. We developed a collaboration among the Clinical Genetics Branch (National Cancer Institute's Intramural Research Program), the Gynecologic Oncology Group (GOG), and the Cancer Genetics Network to address these issues. Methods: This is a prospective, international, twocohort, nonrandomized study of women at genetic risk of ovarian cancer, who chose either to undergo RRSO or screening, at study enrollment. Primary study objectives include quantifying and comparing ovarian and breast cancer incidence in the two study groups, assessing feasibility and selected performance characteristics of a novel ovarian cancer screening strategy (the Risk of Ovarian Cancer Algorithm), evaluating various aspects of quality of life and nononcologic morbidity related to various interventions in at-risk women, and creating a biospecimen repository for subsequent translational research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.