Alzheimer's disease (AD) has become a worldwide disease that is harmful to human health and brings a heavy economic burden to healthcare system. Xiao-Xu-Ming Decoction (XXMD) has been widely used to treat stroke and other neurological diseases for more than 1000 years in China. However, the synergistic mechanism of the constituents in XXMD for the potential treatment of AD is still unclear. Therefore, the present study aimed to predict the potential targets and uncover the material basis of XXMD for the potential treatment of AD. A network pharmacology-based method, which combined data collection, drug-likeness filtering and absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties filtering, target prediction and network analysis, was used to decipher the effect and potential targets of XXMD for the treatment of AD. Then, the acetylcholinesterase (AChE) inhibitory assay was used to screen the potential active constituents in XXMD for the treatment of AD, and the molecular docking was furtherly used to identify the binding ability of active constituents with AD-related target of AChE. Finally, three in vitro cell models were applied to evaluate the neuroprotective effects of potential lead compounds in XXMD. Through the China Natural Products Database, Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database, Traditional Chinese Medicine (TCM)-Database @Taiwan and literature, a total of 1481 compounds in XXMD were finally collected. After ADME/T properties filtering, 908 compounds were used for the further study. Based on the prediction data, the constituents in XXMD formula could interact with 41 AD-related targets. Among them, cyclooxygenase-2 (COX-2), estrogen receptor α (ERα) and AChE were the major targets. The constituents in XXMD were found to have the potential to treat AD through multiple AD-related targets. 62 constituents in it were found to interact with more than or equal to 10 AD-related targets. The prediction results were further validated by in vitro biology experiment, resulting in several potential anti-AD multitarget-directed ligands (MTDLs), including two AChE inhibitors with the IC50 values ranging from 4.83 to 10.22 μM. Moreover, fanchinoline was furtherly found to prevent SH-SY5Y cells from the cytotoxicities induced by sodium nitroprusside, sodium dithionate and potassium chloride. In conclusion, XXMD was found to have the potential to treat AD by targeting multiple AD-related targets and canonical pathways. Fangchinoline and dauricine might be the potential lead compounds in XXMD for the treatment of AD.
Nicotinic
α
4
β
2 receptor antagonists have drawn increasing attention in the development of new antidepressants. In this study, we aimed to investigate the protective effect of VMY-2-95, the new selective antagonist of
α
4
β
2 nicotinic acetylcholine receptor (nAChR) on corticosterone (CORT) injured mice and cellular models. Fluoxetine was applied as a positive control, and the effects of VMY-2-95 were investigated with three different doses or concentrations (1, 3, 10 mg/kg in mice, and 0.003, 0.03, 0.1 μmol/L in cells). As a result, VMY-2-95 showed significant antidepressant-like effects in the CORT injured mice by improving neuromorphic function, promoting hippocampal nerve proliferation, and regulating the contents of monoamine transmitters. Meanwhile, VMY-2-95 exhibited protective effects on cell viability, cell oxidant, cell apoptosis, and mitochondrial energy metabolism on corticosterone-impaired SH-SY5Y cells. Also, the PKA–CREB–BDNF signaling pathway was up-regulated by VMY-2-95 both
in vitro
and
in vivo
, and pathway blockers were also combined with VMY-2-95 to verify the effects furtherly. Therefore, we preliminarily proved that VMY-2-95 had protective effects in depressed mice and SH-SY5Y cells against injuries induced by corticosterone. This work indicated that the application of VMY-2-95 is a potential pharmacological solution for depression. This study also supported the development of
α
4
β
2 nAChR antagonists towards neuropsychiatric dysfunctions.
Excessive nitric oxide (NO) causes extensive damage to the nervous system, and the adrenergic system is disordered in many neuropsychiatric diseases. However, the role of the adrenergic system in protection of the nervous system against sodium nitroprusside (SNP) injury remains unclear. In this study, we investigated the effect of ganoderic acid A (GA A) against SNP injury in neural cells and the role of adrenergic receptors in GA A neuroprotection. We found that SNP (0.125−2 mM) dose-dependently decreased the viability of both SH-SY5Y and PC12 cells and markedly increased NO contents. Pretreatment with GA A (10 μM) significantly attenuated SNP-induced cytotoxicity and NO increase in SH-SY5Y cells, but not in PC12 cells. Furthermore, pretreatment with GA A caused significantly higher adrenaline content in SH-SY5Y cells than in PC12 cells. In order to elucidate the mechanism of GA A-protecting SH-SY5Y cells, we added adrenaline, phentolamine, metoprolol, or ICI 118551 1 h before GA A was added to the culture medium. We found that addition of adrenaline (10 μM) significantly improved GA A protection in PC12 cells. The addition of β1-adrenergic receptor antagonist metoprolol (10 μM) or β2-adrenergic receptor antagonist ICI 118551 (0.1 μM) blocked the protective effect of GA A, whereas the addition of α-adrenergic receptor antagonist phentolamine (0.1 μM) did not affect GA A protection in SH-SY5Y cells. These results suggest that β-adrenergic receptors play an important role in the protection of GA A in SH-SY5Y cells against SNP injuries, and excessive adrenaline system activation caused great damage to the nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.