In order to explore the influence of different rotational acceleration on the transient internal and external flow characteristics of the axial flow pump and improve the performance of the pump, numerical simulations and experiments were used to analyze the variable frequency speed regulation characteristics of the axial flow pump. Taking three-dimensional turbulent numerical simulation as the main research method and CFX as the calculation platform, three variable frequency speed regulation methods were used to conduct transient numerical simulation; keep the acceleration constant, increased and decreased; and obtain the real-time pump performance curve and pressure characteristic curve. Uniform acceleration and deceleration with constant acceleration maintained the stable change and good stability of head and shaft power, and the pressure change was the most stable in the process. The acceleration and deceleration with decreasing acceleration ran most smoothly at high speed, and the frequency conversion effect was the best. At the same time, the transition to steady-state operation was also the most stable. The research in this paper can provide reference for the stable operation of variable frequency speed regulation of the axial flow pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.