Alternative splicing (AS) exists in eukaryotes to increase the complexity and adaptability of systems under biophysiological conditions by increasing transcriptional and protein diversity. As a classic hormone, abscisic acid (ABA) can effectively control plant growth, improve stress resistance, and promote dormancy. At the transcriptional level, ABA helps plants respond to the outside world by regulating transcription factors through signal transduction pathways to regulate gene expression. However, at the post-transcriptional level, the mechanism by which ABA can regulate plant biological processes by mediating alternative splicing is not well understood. Therefore, this paper briefly introduces the mechanism of ABA-induced alternative splicing and the role of ABA mediating AS in plant response to the environment and its own growth.
Drought is a misfortune for agriculture and human beings. The annual crop yield reduction caused by drought exceeds the sum of all pathogens. As one of the gatekeepers of China’s “granary”, rice is the most important to reveal the key drought tolerance factors in rice. Rice seedlings of Nipponbare (Oryza sativa L. ssp. Japonica) were subjected to simulated drought stress, and their root systems were analyzed for the non-targeted metabolome and strand-specific transcriptome. We found that both DEGs and metabolites were enriched in purine metabolism, and allantoin accumulated significantly in roots under drought stress. However, few studies on drought tolerance of exogenous allantoin in rice have been reported. We aimed to further determine whether allantoin can improve the drought tolerance of rice. Under the treatment of exogenous allantoin at different concentrations, the drought resistant metabolites of plants accumulated significantly, including proline and soluble sugar, and reactive oxygen species (ROS) decreased and reached a significant level in 100 μmol L−1. To this end, a follow-up study was identified in 100 μmol L−1 exogenous allantoin and found that exogenous allantoin improved the drought resistance of rice. At the gene level, under allantoin drought treatment, we found that genes of scavenge reactive oxygen species were significantly expressed, including peroxidase (POD), catalase (CATA), ascorbate peroxidase 8 (APX8) and respiratory burst oxidase homolog protein F (RbohF). This indicates that plants treated by allantoin have better ability to scavenge reactive oxygen species to resist drought. Alternative splicing analysis revealed a total of 427 differentially expressed alternative splicing events across 320 genes. The analysis of splicing factors showed that gene alternative splicing could be divided into many different subgroups and play a regulatory role in many aspects. Through further analysis, we restated the key genes and enzymes in the allantoin synthesis and catabolism pathway, and found that the expression of synthetase and hydrolase showed a downward trend. The pathway of uric acid to allantoin is completed by uric acid oxidase (UOX). To find out the key transcription factors that regulate the expression of this gene, we identified two highly related transcription factors OsERF059 and ONAC007 through correlation analysis. They may be the key for allantoin to enhance the drought resistance of rice.
Alternative splicing is an important mechanism for regulating gene expressions at the post-transcriptional level. In eukaryotes, the genes are transcribed in the nucleus to produce pre-mRNAs and alternative splicing can splice a pre-mRNA to eventually form multiple different mature mRNAs, greatly increasing the number of genes and protein diversity. Alternative splicing is involved in the regulation of various plant life activities, especially the response of plants to abiotic stresses and is also an important process of plant growth and development. This review aims to clarify the usefulness of a genome-wide association analysis in the study of alternatively spliced variants by summarizing the application of alternative splicing, genome-wide association analyses and genome-wide association analyses in alternative splicing, as well as summarizing the related research progress.
Grain size is an important component of quality and harvest traits in the field of rice breeding. Although numerous quantitative trait loci (QTLs) of grain size in rice have been reported, the molecular mechanisms of these QTLs remain poorly understood, and further research on QTL observation and candidate gene identification is warranted. In our research, we developed a suite of F2 intercross populations from a cross of 9311 and CG. These primary populations were used to map QTLs conferring grain size, evaluated across three environments, and then subjected to bulked-segregant analysis-seq (BSA-seq). In total, 4, 11, 12 and 14 QTLs for grain length (GL), grain width (GW), 1000-grain weight (TGW), and length/width ratio (LWR), respectively, were detected on the basis of a single-environment analysis. In particular, over 200 splicing-related sites were identified by whole-genome sequencing, including one splicing-site mutation with G>A at the beginning of intron 4 on Os03g0841800 (qGL3.3), producing a smaller open reading frame, without the third and fourth exons. A previous study revealed that the loss-of-function allele caused by this splicing site can negatively regulate rice grain length. Furthermore, qTGW2.1 and qGW2.3 were new QTLs for grain width. We used the near-isogenic lines (NILs) of these GW QTLs to study their genetic effects on individuals and pyramiding, and found that they have additive effects on GW. In summary, these discoveries provide a valuable genetic resource, which will facilitate further study of the genetic polymorphism of new rice varieties in rice breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.