The aim of this paper is to study degradation of a bromophenol blue molecule (C19H10Br4O5S) using direct irradiation of cold atmospheric argon plasma jet. The pH of the bromophenol blue solution has been measured as well as its absorbance spectra and conductivity before and after the irradiation of non-thermal plasma jet in various time durations. The results indicated that the lengths of conjugated systems in the molecular structure of bromophenol blue decreased, and that the bromophenol blue solution was decolorized as a result of the decomposition of bromophenol blue. This result shows that non-thermal plasma jet irradiation is capable of decomposing, and can also be used for water purification.
This research study aims to decompose bromocresol green (C21H14Br4O5S) using direct irradiation of a nonthermal atmospheric pressure plasma jet. The absorbance spectra of the bromocresol green solution were measured, as was its electrical conductivity and its pH before and after different durations of irradiation. The results showed that the lengths of conjugated systems in the molecular structure of bromocresol green decreased, and the bromocresol green solution was decolorized as a result of the decomposition of bromocresol green. This result indicates that cold atmospheric pressure plasma jet irradiation is capable of decomposing and can also be used for water purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.