The phenomenon of delayed flowering after the application of nitrogen (N) fertilizer has long been known in agriculture, but the detailed molecular basis for this phenomenon is largely unclear. Here we used a modified method of suppression-subtractive hybridization to identify two key factors involved in N-regulated flowering time control in Arabidopsis thaliana, namely ferredoxin-NADP + -oxidoreductase and the blue-light receptor cryptochrome 1 (CRY1). The expression of both genes is induced by low N levels, and their loss-offunction mutants are insensitive to altered N concentration. Low-N conditions increase both NADPH/NADP + and ATP/AMP ratios, which in turn affect adenosine monophosphate-activated protein kinase (AMPK) activity. Moreover, our results show that the AMPK activity and nuclear localization are rhythmic and inversely correlated with nuclear CRY1 protein abundance. Low-N conditions increase but high-N conditions decrease the expression of several key components of the central oscillator (e.g., CCA1, LHY, and TOC1) and the flowering output genes (e.g., GI and CO). Taken together, our results suggest that N signaling functions as a modulator of nuclear CRY1 protein abundance, as well as the input signal for the central circadian clock to interfere with the normal flowering process. T he transition from vegetative to reproductive development is a central event in the plant life cycle, which is coordinately regulated by various endogenous and external cues. In the model dicotyledonous plant species Arabidopsis thaliana, five distinct genetic pathways regulating flowering time have been established: the vernalization pathway, photoperiod pathway, gibberellin acid (GA) pathway, autonomous pathway, and endogenous (age) pathway (1). These pathways ultimately converge to regulate a set of floral integrator genes, FLOWERING LOCUS T (FT) and SUPPRESSOR OF CONSTANS 1 (SOC1), which in turn activate the expression of floral meristem identity genes to trigger the formation of flowers (2-4).Plants use the circadian clock as the timekeeping mechanism to measure day length and to ensure flowering at the proper season (5, 6). As a facultative long-day (LD) plant, Arabidopsis flowers earlier under LD conditions than under short-day (SD) conditions. Forward genetics in A. thaliana have identified the GI-CO-FT hierarchy as the canonical genetic pathway promoting flowering specifically under LD conditions (5,7,8). In this pathway, GI (GIGANTEA) can be considered the output point of the circadian clock to control flowering by regulating CONSTANS (CO) expression in the right phase, which activates expression of FT and TSF (TWIN SISTER OF FT) in the companion cells of the phloem within the vascular tissue (2, 9). FT and TSF proteins act as the long-sought florigens that move from leaves to the apical meristem to induce genes required for reproductive development (2-4). Both GI and CO are regulated by the circadian clock and by light signaling simultaneously and at both transcriptional and posttranscriptional levels, to en...
Genetic and physiological studies have revealed evidences for multiple signaling pathways by which the plastid exerts retrograde control over photosynthesis-associated-nuclear-genes. In this study we have examined the mechanisms of control of transcription by plastid signals, focusing on transcription factors. We have also further addressed the physical nature of plastid signals and the physiological role, in stress acclimation of this regulatory pathway. ABI4, a master Apetala 2 (AP2)-type transcription factor (TF), is targeted by multiple signalling pathways in plant cells, such as abscisic acid (ABA) signals, sugar signals and plastid signals derived from reactive oxygen species (ROS) and chlorophyll intermediates. ABI4 binds the promoter of target genes to prevent their transcription by competing with other competitive TFs. However, we found that once ABI4 bound the element (CCACGT), it may not be bound by other TFs, therefore making the signalling long-lasting. Downstream of ABI4, CBFA (CCAAT binding factor A) is a subunit of the HAP2/HAP3/HAP5 (Heme activator protein) trimeric transcription complex. CBFA however is a redundant HAP3 subunit. When emergency occurs (such as herbicide treatments or environmental stresses followed by ABA and ROS accumulation), the master transcription factor ABI4 down-regulates some TFs, like CBFA, and then some other TF subunits enter the transcription complex and transcriptional efficiency of stress-responsive genes (including the transcription co-factor CBP) is improved instantaneously. abi4, cbfA and cbp mutants showed weaker drought-tolerance after a herbicide norflurazon treatment, which indicated the physiological role of these key transcription factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.