The localization of low-frequency coherent sources requires a proper aperture to ensure a high spatial resolution. Attaining a large aperture is difficult in practice when the conditions involved are limited. This letter investigated a compressive beamforming-based passive synthetic aperture approach with a reference sensor in a fixed position. Localization findings on acoustic sources in a semi-anechoic chamber were compared with conventional beamforming, compressive beamforming, passive synthetic aperture, and compressive beamforming-based passive synthetic aperture. Results suggest that the proposed method can produce a higher spatial resolution and higher detection ability than the others.
Passive localization of a sound source in the deep ocean is investigated in this study. The source can be localized by taking advantage of a cross-correlation function matching technique. When a two-sensor vertical array is used in the deep ocean, two types of side lobe curves appear in the ambiguity surface of the localization. The side lobe curves are analytically expressed and they are then used as indicators of the localization result instead of the scanning point with the maximum power. Simulation and experiment demonstrate the performance of the proposed passive localization method.
High power vacuum electronic devices of the millimeter wave to terahertz regime are attracting extensive interest due to their potential applications in science and technologies. In this paper, a novel sheet beam (SB) folded waveguide (FWG) slow-wave structure (SWS) is applied and studied for enhanced output power of oscillators. Through the analysis of high-frequency characteristics of the SB FWG-SWS, the selection of an appropriate beam–wave interaction point on the dispersion curve and beam position is determined for an SB folded waveguide oscillator (FWO) operating near the 2π stopband point. The fundamental mode operation of the SB FWO was verified by the particle-in-cell simulation results, which also indicate that the SB FWO exhibits a better outstanding performance (84.6 W with a beam voltage and current of 25.1 kV and 200 mA, respectively) than the conventional circular beam FWO. The transmission stability of the SB was analyzed by observing the interception beam current in the FWO. The voltage and frequency tuning performance of the SB FWO were discussed in combination with clutter suppression. A preliminary experiment was conducted by fabricating a 220 GHz SB FWG-SWS and measuring the S parameter.
This paper presents a joint estimation method of source range and depth using a bottom-deployed vertical line array (VLA). The method utilizes the information on the arrival angle of direct (D) path in space domain and the interference characteristic of D and surface-reflected (SR) paths in frequency domain. The former is related to a ray tracing technique to backpropagate the rays and produces an ambiguity surface of source range. The latter utilizes Lloyd’s mirror principle to obtain an ambiguity surface of source depth. The acoustic transmission duct is the well-known reliable acoustic path (RAP). The ambiguity surface of the combined estimation is a dimensionless ad hoc function. Numerical efficiency and experimental verification show that the proposed method is a good candidate for initial coarse estimation of source position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.