The Ss oil field is found in the Turpan-Hami Basin’s Taipei Sag’s arc structural belt. This reservoir has a complicated character that has a significant impact on reservoir modeling and production prediction. This is a fault-block reservoir with ultralow permeability and low porosity that is divided by 57 faults. A static model was constructed by Petrel software based on reinterpretation of original log and core data and seismic information so as to clarify the spatial distribution of oil and water in the reservoir and to fit the development history of the later simulated reservoir. The integrated geological modeling approach is described in this work using the Ss reservoir as an example. A 3D structural model was built based on the spatial cutting relationship between the layer model and the fault, and the model’s quality was improved by breakpoint data, which more correctly depicted the structural properties of the research area. The lithofacies model was built within the restrictions of sedimentary facies using the sequential Gaussian simulation (SGS) stochastic modeling approach, which is paired with variogram data analysis to achieve the range value. To obtain the porosity and permeability model, the empirical formula of porosity and permeability, the SGS method, and the variation range value was input into the lithofacies model. It is important to note that the input lithofacies and property models have values of the same range. To gain the water saturation model, the distinct S w function formulas of the S 1 ~ S 4 layer derived from the J S w function were fed into the software. The NTG model was created according to the lower limit of porosity, which is 11%. The merging of detailed reservoir description and simulation led to the establishment of the Ss reservoir geological model. In the plane, the scale of the geological model has reached the meter level and decimeter level in the longitudinal direction. It also offers a framework for optimum reservoir modeling for complex fault-block reservoirs. This method improves the accuracy and precision of the model by reflecting the reservoir’s heterogeneity and the oil-water distribution. It could provide more details for future reservoir research such as fine reservoir simulation.
Polycrystalline diamond compact (PDC) bits experience a serious wear problem in drilling tight gravel layers. To achieve efficient drilling and prolong the bit service life, a simplified model of a PDC bit with double cutting teeth was established by using finite-element numerical simulation technology, and the rock-breaking process of PDC bit cutting teeth was simulated using the Archard wear principle. The numerical simulation results of the wear loss of the PDC bit cutting teeth, such as the caster angle, temperature, linear velocity, and bit pressure, as well as previous experimental research results, were combined into a training dataset. Then, machine learning methods for equal-probability gene expression programming (EP-GEP) were used. Based on the accuracy of the training set, the effectiveness of this method in predicting the wear of PDC bits was demonstrated by verifying the dataset. Finally, a prediction dataset was established by a Latin hypercube experiment and finite-element numerical simulation. Through comparison with the EP-GEP prediction results, it was verified that the prediction accuracy of this method meets actual engineering needs. The results of the sensitivity analysis method for the gray correlation degree show that the degree of influence of bit wear is in the order of temperature, back dip angle of the PDC cutter, linear speed, and bit pressure. These results demonstrate that when an actual PDC bit is drilling hard strata such as a conglomerate layer, after the local high temperature is generated in the formation cut by the bit, appropriate cooling measures should be taken to increase the bit pressure and reduce the rotating speed appropriately. Doing so can effectively reduce the wear of the bit and prolong its service life. This study provides guidance for predicting the wear of a PDC bit when drilling in conglomerate, adjusting drilling parameters reasonably, and prolonging the service life of the bit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.