Asphalt mortar is a typical temperature-sensitive material that plays a crucial role in the performance of asphalt mixture. This study evaluates the high- and low-temperature performance of asphalt mortar based on the dynamic mechanical analysis (DMA) method. Temperature-sweep tests of asphalt mortars were conducted using the DMA method under fixed strain level, frequency, and heating rate conditions. The dynamic mechanical response curves, characteristic temperature, and other indices were obtained and used to investigate the high- and low-temperature performance of asphalt mortar. The results showed that the phase transition temperatures T1, T0, and Tg can be used to evaluate the low-temperature performance of asphalt mortar. Additionally, they had a good linear relationship, and the evaluation results were consistent. Meanwhile, T2, E60, and tan(δ)max indicators can effectively evaluate the high-temperature performance of asphalt mortar. Asphalt plays a key role in the performance of asphalt mortar. Mortars with neat asphalt A70 and modified asphalt AR had the worst and best high- and low-temperature performances, respectively. Furthermore, the finer gradation improved the low-temperature performance of asphalt mortar, while the coarser gradation improved the high-temperature properties of modified asphalt mortars but had the opposite effect on neat asphalt A70.
Asphalt mixture is a typical viscoelastic material, and its road performance will change with the action of environment and load during actual service. This study conducted experimental research on the surface course asphalt mixture of three categories and six typical structures of RIOHTrack based on the Dynamic Mechanical Analysis method. Moreover, this study explored the performance evolution law of asphalt mixture under the coupling action of load and environment in the process of loading from 0 million to 54 million standard axle times. Results demonstrated that the phase transition characteristic temperature of the surface course materials of the three types of typical structures showed a trend of first increasing and then decreasing with the accumulation of load and environmental effects, indicating the presence of two stages of the dual coupling effect of environmental aging and load rolling on the asphalt mixture during service. In addition, the results suggested that the phase transition characteristic temperature, modulus, and phase angle of the surface layer materials have obvious material differences and structure dependencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.