Currently, combining biomaterial scaffolds with living stem cells for tissue regeneration is a main approach for tissue engineering. Mesenchymal stem cells (MSCs) are promising candidates for musculoskeletal tissue repair through differentiating into specific tissues, such as bone, muscle, and cartilage. Thus, successfully directing the fate of MSCs through factors and inducers would improve regeneration efficiency. Here, we report the fabrication of graphene oxide (GO)-doped poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds via electrospinning technique for the enhancement of osteogenic differentiation of MSCs. GO-PLGA nanofibrous mats with three-dimensional porous structure and smooth surface can be readily produced via an electrospinning technique. GO plays two roles in the nanofibrous mats: first, it enhances the hydrophilic performance, and protein- and inducer-adsorption ability of the nanofibers. Second, the incorporated GO accelerates the human MSCs (hMSCs) adhesion and proliferation versus pure PLGA nanofiber and induces the osteogenic differentiation. The incorporating GO scaffold materials may find applications in tissue engineering and other fields.
C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages.
Recently, attempts have been made to apply graphene oxide (GO) in the field of biology and medicine, such as DNA sensing and drug delivery with some necessary modifications. Therefore, the toxicity of GO must be evaluated before it is applied further in biomedicine. In this paper, the cytotoxicity and genotoxicity of GO to human lung fibroblast (HLF) cells have been assessed with methyl thiazolyl tetrazolium (MTT), sub-G1 measurement and comet assays, and the mechanism of its toxicity has been explored. Various modifications of GO have been made to help us determine the factors which could affect the toxicity of GO. The results indicated that cytotoxicity and genotoxicity of GO to HLF cells were concentration dependent, and the genotoxicity induced by GO was more severe than the cytotoxicity to HLF cells. Oxidative stress mediated by GO might explain the reason of its toxic effect. Furthermore, the electronic charge on the surface of GO would play a very important role in the toxicity of GO to HLF cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.