In contrast to the extensive but non-recyclable use of tetraalkoxydiboron(4) compounds as stoichiometric reagents in diverse reactions, this article reports an atom-economical reaction using a commercial diboron(4) as the catalyst. The key to success was designing a catalytic cycle for radical [3+2] cycloaddition involving a pyridine cocatalyst to generate from the diboron(4) catalyst and reversibly mediate the transfer of boronyl radicals. In comparison with known [3+2] cycloaddition with transition metal-based catalysts, the current reaction features not only metal-free conditions, inexpen-sive and stable catalysts, and simple operation, but also remarkably broadened substrate scope. In particular, previously unusable cyclopropyl ketones without an activating group and/or alkenes with 1,2-disubstitution and 1,1,2-trisubstitution pattern were successfully used for the first time. Consequently, challenging cyclopentane compounds with various levels of substitution (65 examples, 57 new products, up to six substituents at all five ring atoms) were readily prepared in generally high to excellent yield and diastereoselectivity. The reaction was also successfully applied in con-cise formal synthesis of an anti-obesity drug and building natural product-like complex bridged or spiralcyclic com-pounds. Mechanistic experiments and computational investigation support the proposed radical relay catalysis featuring a pyridine-assisted boronyl radical catalyst. Overall, this work demonstrates the first approach to use tetraalkoxydibo-ron(4) compounds as catalysts and may lead to the development of new, green and efficient transition metal-like boron-catalyzed organic reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.