Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves face feature discrimination. However, the traditional softmax loss of deep CNNs usually lacks the power of discrimination. To address this problem, recently several loss functions such as center loss, large margin softmax loss, and angular softmax loss have been proposed. All these improved losses share the same idea: maximizing inter-class variance and minimizing intra-class variance. In this paper, we propose a novel loss function, namely large margin cosine loss (LMCL), to realize this idea from a different perspective. More specifically, we reformulate the softmax loss as a cosine loss by L 2 normalizing both features and weight vectors to remove radial variations, based on which a cosine margin term is introduced to further maximize the decision margin in the angular space. As a result, minimum intra-class variance and maximum inter-class variance are achieved by virtue of normalization and cosine decision margin maximization. We refer to our model trained with LMCL as CosFace.
Sheng Hong was born in China, in 1981. He received his master degree and doctoral degree in communication and information system from Beihang University, in 2005 and 2009, respectively. He is now a graduate student advisor in the School of Reliability and System Engineering of Beihang University. His recent interests include signal processing, information system modeling, prognostics and heath management. Zheng Zhou was born in China, in 1989. He was a graduate student in Beihang University for master degree. He is now with the systems engineering research institute, CSSC.
As facial appearance is subject to significant intra-class variations caused by the aging process over time, age-invariant face recognition (AIFR) remains a major challenge in face recognition community. To reduce the intra-class discrepancy caused by the aging, in this paper we propose a novel approach (namely, Orthogonal Embedding CNNs, or OE-CNNs) to learn the age-invariant deep face features. Specifically, we decompose deep face features into two orthogonal components to represent age-related and identity-related features. As a result, identity-related features that are robust to aging are then used for AIFR. Besides, for complementing the existing cross-age datasets and advancing the research in this field, we construct a brand-new large-scale Cross-Age Face dataset (CAF). Extensive experiments conducted on the three public domain face aging datasets (MORPH Album 2, CACD-VS and FG-NET) have shown the effectiveness of the proposed approach and the value of the constructed CAF dataset on AIFR. Benchmarking our algorithm on one of the most popular general face recognition (GFR) dataset LFW additionally demonstrates the comparable generalization performance on GFR.Recent AIFR researches primarily concentrate on two technical schemes: generative scheme and discriminative scheme. The generative scheme models the AIFR by synthesizing faces to one or more fixed age category then performs recognition with the artificial face representations [9,16,30].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.