Highlights d Genome-wide CRISPR-Cas9 screens identify regulators of DPR protein production d The RNA helicase DDX3X suppresses RAN translation of C9ORF72 (GGGGCC)n repeats d Elevating DDX3X expression decreases DPR levels in C9ORF72-ALS patient cells d Elevating DDX3X rescues pathological features and improves survival of patient iPSNs
C9ORF72 hexanucleotide GGGGCC repeat expansion is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat-containing RNA mediates toxicity through nuclear granules and dipeptide repeat (DPR) proteins produced by repeat-associated non-AUG translation. However, it remains unclear how the intron-localized repeats are exported and translated in the cytoplasm. We use single molecule imaging approach to examine the molecular identity and spatiotemporal dynamics of the repeat RNA. We demonstrate that the spliced intron with G-rich repeats is stabilized in a circular form due to defective lariat debranching. The spliced circular intron, instead of pre-mRNA, serves as the translation template. The NXF1-NXT1 pathway plays an important role in the nuclear export of the circular intron and modulates toxic DPR production. This study reveals an uncharacterized disease-causing RNA species mediated by repeat expansion and demonstrates the importance of RNA spatial localization to understand disease etiology.
Background Sulfate availability is crucial for the sulfonation of brain extracellular matrix constituents, membrane phospholipids, neurosteroids, and neurotransmitters. Observations from humans and mouse models suggest dysregulated sulfate levels may be associated with neurodevelopmental disorders, such as autism. However, the cellular mechanisms governing sulfate homeostasis within the developing or adult brain are not fully understood. Methods We utilized a mouse model with a conditional allele for the sulfate transporter Slc13a4 , and a battery of behavioral tests, to assess the effects of disrupted sulfate transport on maternal behaviors, social interactions, memory, olfaction, exploratory behavior, anxiety, stress, and metabolism. Immunohistochemistry examined neurogenesis within the stem cells niches. Findings The sulfate transporter Slc13a4 plays a critical role in postnatal brain development. Slc13a4 haploinsufficiency results in significant behavioral phenotypes in adult mice, notably impairments in social interaction and long-term memory, as well as increased neurogenesis in the subventricular stem cell niche. Conditional gene deletion shows these phenotypes have a developmental origin, and that full biallelic expression of Slc13a4 is required only in postnatal development. Furthermore, administration of N -acetylcysteine (NAC) within postnatal window P14-P30 prevents the onset of phenotypes in adult Slc13a4 +/− mice. Interpretation Slc13a4 haploinsufficient mice highlight a requirement for adequate sulfate supply in postnatal development for the maturation of important social interaction and memory pathways. With evidence suggesting dysregulated sulfate biology may be a feature of some neurodevelopmental disorders, the utility of sulfate levels as a biomarker of disease and NAC administration as an early preventative measure should be further explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.