Lithium-ion batteries are still the main theme of the contemporary market. Commercial graphite has struggled to meet the demand of high energy density for various electronic products due to its low theoretical capacity. Therefore, exploring for a new anode with high capacity is important. Vanadium nitride has attracted widespread attention due to its high theoretical specific capacity and good chemical/thermal stability. However, vanadium nitride is accompanied by huge volume expansion and nanoparticle agglomeration during the electrochemical reaction, which limits its application. Herein, sea-urchin-like vanadium nitride (SUK-VN) was successfully prepared with a simple hydrothermal method combined with an annealing strategy to boost the actual capacity of the vanadium nitride. The special sea-urchin-like morphology effectively suppresses the agglomeration of vanadium nitride nanoparticles and exposes more reactive sites, which facilitates the electrochemical performance of electrode materials. In the half-cells, sea-urchin-like vanadium nitride exhibits a specific capacity of 361.5 mAh g−1 at 0.1 A g−1 after 60 cycles, and even still achieves a specific capacity of 164.5 with a Coulomb efficiency of approximately 99.9% at 1 A g−1 after 500 cycles. Such a strategy provides the potential to enhance the electrochemical properties of vanadium nitride anodes in terms of solving the nanoparticle agglomeration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.