The sturgeon (Acipenseriformes) is an important farmed species because of its economical value. However, neither gene transfer nor gene editing techniques have been established in sturgeon for molecular breeding and gene functional study until now. In this study, we accomplished gene transfer and gene editing in sterlet (Acipenser ruthenus), which has the shortest sexual maturation period of sturgeons. The plasmid encoding enhanced green fluorescent protein (EGFP) was transferred into the embryos of sterlet at injection concentration of 100 ng/μL, under which condition high survival rate and gene transfer rate could be achieved. Subsequently, exogenous EGFP was efficiently disrupted by transcription activator-like effector nucleases (TALENs) or clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease/guide RNA (gRNA), with injection concentrations of 300 ng/μL TALENs, or 100 ng/μL Cas9 nuclease and 30 ng/μL gRNA, respectively, under which condition high survival rate and gene mutation rate could be achieved. Finally, the endogenous gene no tail in sterlet was successfully mutated by Cas9 nuclease/gRNA. We observed the CRISPR-induced no tail mutation, at a high efficiency with the mutant P0 embryos displaying the expected phenotype of bent spine and twisted tail.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of adult renal neoplasm and has a poor prognosis owing to a limited understanding of the disease mechanisms. The aim of this study was to explore and identify the key genes and signaling pathways in ccRCC. Methods: The GSE36895 gene expression profiles were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were then screened using software packages in R. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, a proteinprotein interaction (PPI) network of DEGs was constructed with Cytoscape software, and submodules were subsequently analyzed using the MCODE plug-in. Results: Twenty-nine ccRCC samples and 23 normal samples were incorporated into this study, and a total of 468 DEGs were filtered, consisting of 180 upregulated genes and 288 downregulated genes. The upregulated DEGs were significantly enriched in the immune response, response to wounding, inflammatory response, and response to hypoxia, whereas downregulated genes were mainly enriched in ion transport, anion transport, and monovalent inorganic cation transport biological processes (BPs). According to Molecular Complex Detection analysis in PPI, C1QA, C1QB, C1QC, CCND1 and EGF had higher degrees of connectivity and could participate in the majority of important pathways, such as cytokine-cytokine receptor interactions, the chemokine signaling pathway, and the complement and coagulation cascade pathways. Conclusions: Our study suggests that C1QA, C1QB, C1QC, CCND1 and EGF may play key roles in the progression of ccRCC, which will be useful for future studies on the underlying mechanisms of ccRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.