The advent of autonomous navigation, positioning, and general robotics technologies has enabled the improvement of small to miniature-sized unmanned aerial vehicles (UAVs, or ‘drones’) and their wide uses in engineering practice. Recent research endeavors further envision a systematic integration of aerial drones and traditional contact-based or ground-based sensors, leading to an aerial–ground wireless sensor network (AG-WSN), in which the UAV serves as both a gateway besides and a remote sensing platform. This paper serves two goals. First, we will review the recent development in architecture, design, and algorithms related to UAVs as a gateway and particularly illustrate its nature in realizing an opportunistic sensing network. Second, recognizing the opportunistic sensing need, we further aim to focus on achieving energy efficiency through developing an active radio frequency (RF)-based wake-up mechanism for aerial–ground data transmission. To prove the effectiveness of energy efficiency, several sensor wake-up solutions are physically implemented and evaluated. The results show that the RF-based wake-up mechanism can potentially save more than 98.4% of the energy that the traditional duty-cycle method would otherwise consume, and 96.8% if an infrared-receiver method is used.
Highway projects are the favorites of public-private partnership (PPP) investors because of their stable cash flow. However, there are high uncertainties in terms of traffic volume, resulting in unpredictable revenues, which has drawn major concern of PPP investors. For a road in a network, the traffic volume is determined by the traffic allocation rate, which is affected not only by the total traffic volume in the region but also by other traffic risk factors, such as travel time, toll rates, and travelling comfort. The conventional traffic allocation forecasting technique predominantly depends on the travel time, overlooking other risk factors. Consequently, traffic allocation forecasting is usually inaccurate. To improve the accuracy of traffic allocation forecasting in PPP road projects, this paper proposes to consider the effect of traffic risks together with traffic time by using the mean utility. Multinomial logit (MNL) model based on mean utility is used to predict the traffic allocation rate. To validate the proposed model, the system dynamic (SD) modeling is established to forecast the traffic volume of a case highway using the proposed traffic allocation forecasting model. The simulated result shows that the simulated traffic volume of past years from the proposed model is highly consistent with the actual one, evidencing that the proposed model can greatly improve the accuracy of the traffic forecasting.
Energy efficiency in wireless sensing networks (WSN) is the last-mile challenge when deploying a WSN for field-based monitoring task to environmentally hard-access, remote, and geospatial large or complex spaces. In this paper, we propose a novel aerial-ground and energy efficient sensing network for meeting the need of geospatial field monitoring by using an aerial UAV as the mobile gateway to wireless sensor nodes in the ground (or in ground structures). Then the focus of this paper is on achieving energy efficiency for ground sensor nodes. In this paper, the authors develop an active radio-frequency (RF) based wake-up mechanism for data transmission in the aerial-ground sensing network. To prove the energy efficiency, several sensor wake-up solutions are physically implemented and evaluated. The results show that the RF-based wake-up mechanism can potentially save more than 98.4% of the energy that the traditional duty-cycle method would otherwise consume, and 96.8% if an infrared-receiver method is used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.