The current standard of treatment against tuberculosis consists of a cocktail of first-line drugs, including isoniazid and pyrazinamide. Although these drugs are known to be bactericidal, contribution of host cell responses in the context of antimycobacterial chemotherapy, if any, remains unknown. We demonstrate that isoniazid and pyrazinamide promote autophagy activation and phagosomal maturation in Mycobacterium tuberculosis (Mtb)-infected host cells. Treatment of Mtb-infected macrophages with isoniazid or pyrazinamide caused significant activation of cellular and mitochondrial reactive oxygen species and autophagy, which was triggered by bacterial hydroxyl radical generation. Mycobacterium marinum-infected autophagy-defective, atg7 mutant Drosophila exhibited decreased survival rates, which could not be rescued by antimycobacterial treatment, indicating that autophagy is required for effective antimycobacterial drug action in vivo. Moreover, activation of autophagy by antibiotic treatment dampened Mtb-induced proinflammatory responses in macrophages. Together, these findings underscore the importance of host autophagy in orchestrating successful antimicrobial responses to mycobacteria during chemotherapy.
The “enhanced intracellular survival” (eis) gene of Mycobacterium tuberculosis (Mtb) is involved in the intracellular survival of M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS)-dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Δeis) displayed markedly increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of macrophages with Mtb-Δeis increased the production of tumor necrosis factor-α and interleukin-6 over the levels produced by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Δeis (for which NADPH oxidase and mitochondria were largely responsible) rendered the cells highly sensitive to autophagy activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses, macrophages infected with Mtb-Δeis underwent caspase-independent cell death. This cell death was significantly inhibited by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating autophagy, inflammation, and cell death in a redox-dependent manner.
Gp91phox/NADPH oxidase (NOX) 2 is the main catalytic component of NOX, which mediates the phagocytic killing of ingested pathogens via the production of reactive oxygen species (ROS). However, Mycobacterium tuberculosis (Mtb) is relatively resistant to the microbicidal effects of ROS. Thus, the exact roles of NOX2 in the innate immune control against Mtb infection are not fully resolved. In this study, we show that NOX2 is essential for TLR2-dependent inflammatory responses and 1,25-dihydroxyvitamin D3 (1,25D3)-mediated antimicrobial activity against Mtb via cathelicidin expression. NOX2-null macrophages prominently abrogated Mtb-induced ROS production and inflammatory signaling activation in a TLR2-dependent manner. Mtb triggered a physical association between NOX2 and TLR2. In addition, the knockdown of NOX2 inhibited 1,25D3-triggered antimicrobial activity against viable Mtb through the modulation of cathelicidin expression in human macrophages. Treatment of NOX2 knocked down cells with cathelicidin restored the 1,25D3-induced antimicrobial effect, suggesting that the NOX2-dependent induction of cathelicidin in macrophages is part of a defensive strategy against Mtb. Furthermore, cathelicidin expression was required for the Mtb-induced release of ROS and the production of proinflammatory cytokines/chemokines, indicating a positive circuit of inflammation in response to Mtb. Our data collectively demonstrate a novel regulatory mechanism for TLR2-dependent innate responses to Mtb involving crosstalk between NOX2 and TLR2 and the expression of cathelicidin.
Stimulation of human lung fibroblast cells with TGF-β1 resulted in a transient burst of reactive oxygen species with maximal increase at 5 min after treatment. This reactive oxygen species increase was inhibited by the antioxidant, N-acetyl-l-cysteine (NAC). TGF-β1 treatment stimulated IL-6 gene expression and protein synthesis in human lung fibroblast cells. Antioxidants including NAC, glutathione, and catalase reduced TGF-β1-induced IL-6 gene expression, and direct H2O2 treatment induced IL-6 expression in a dose-dependent manner. NAC also reduced TGF-β1-induced AP-1 binding activity, which is involved in IL-6 gene expression. It has been reported that Ca2+ influx is stimulated by TGF-β1 treatment. EGTA suppressed TGF-β1- or H2O2-induced IL-6 expression, and ionomycin increased IL-6 expression, with simultaneously modulating AP-1 activity in the same pattern. PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase/extracellular signal-related kinase kinase 1, suppressed TGF-β1- or H2O2-induced IL-6 and AP-1 activation. In addition, TGF-β1 or H2O2 increased MAPK activity which was reduced by EGTA and NAC, suggesting that MAPK is involved in TGF-β1-induced IL-6 expression. Taken together, these results indicate that TGF-β1 induces a transient increase of intracellular H2O2 production, which regulates downstream events such as Ca2+ influx, MAPK, and AP-1 activation and IL-6 gene expression.
The marine bacterium causes food-borne diseases, which may lead to life-threatening septicemia in some individuals. Therefore, identifying virulence factors in is of high priority. We performed a transcriptome analysis on after infection of human intestinal HT29-methotrexate cells and found induction of, encoding a putative phospholipase, PlpA. Bioinformatics, biochemical, and genetic analyses demonstrated thatPlpA is a phospholipase A secreted in a type II secretion system-dependent manner. Compared with the wild type, the mutant exhibited reduced mortality, systemic infection, and inflammation in mice as well as low cytotoxicity toward the human epithelial INT-407 cells. Moreover, mutation attenuated the release of actin and cytosolic cyclophilin A from INT-407 cells, indicating that PlpA is a virulence factor essential for causing lysis and necrotic death of the epithelial cells. transcription was growth phase-dependent, reaching maximum levels during the early stationary phase. Also, transcription factor HlyU and cAMP receptor protein (CRP) mediate additive activation and host-dependent induction of Molecular biological analyses revealed that expression is controlled via the promoter, P , and that HlyU and CRP directly bind to P upstream sequences. Taken together, this study demonstrated that PlpA is a type II secretion system-dependent secretory phospholipase A regulated by HlyU and CRP and is essential for the pathogenicity of .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.