The edge computing model offers an ultimate platform to support scientific and real-time workflow-based applications over the edge of the network. However, scientific workflow scheduling and execution still facing challenges such as response time management and latency time. This leads to deal with the acquisition delay of servers, deployed at the edge of a network and reduces the overall completion time of workflow. Previous studies show that existing scheduling methods consider the static performance of the server and ignore the impact of resource acquisition delay when scheduling workflow tasks. Our proposed method presented a meta-heuristic algorithm to schedule the scientific workflow and minimize the overall completion time by properly managing the acquisition and transmission delays. We carry out extensive experiments and evaluations based on commercial clouds and various scientific workflow templates. The proposed method has approximately 7.7% better performance than the baseline algorithms, particularly in overall deadline constraint that gives a success rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.